
 

 

 

ARMlite 

Programming Reference Manual 

 

By Peter Higginson 

 

 

v1.0 

 

Manual last updated: 05/01/2020 

 

https://peterhigginson.co.uk/ARMlite/ 

  

https://peterhigginson.co.uk/ARMlite/


Code layout & formatting ................................................................................................................................ 1 

Comments .......................................................................................................................................................... 1 

Labels ................................................................................................................................................................. 1 

Case sensitivity ................................................................................................................................................... 1 

Spaces ................................................................................................................................................................. 1 

Memory ........................................................................................................................................................... 1 

Registers .......................................................................................................................................................... 2 

Instructions & Directives .................................................................................................................................. 2 

Moving values between registers and memory ................................................................................................. 2 
MOV ................................................................................................................................................................. 2 
LDR, STR, LDRB, STRB ............................................................................................................................ 2 
‘Little endianness’ .......................................................................................................................................... 3 
Indirect addressing ........................................................................................................................................ 3 
Indexed addressing ........................................................................................................................................ 4 
Direct addressing ........................................................................................................................................... 4 

Comparison, Addition & Subtraction .................................................................................................................. 4 
CMP ................................................................................................................................................................ 4 
ADD and SUB .................................................................................................................................................. 5 
ADDS, SUBS .................................................................................................................................................... 5 
Status bits ...................................................................................................................................................... 5 

Bitwise manipulation .......................................................................................................................................... 6 
AND, ORR, (OR), EOR, (XOR) .......................................................................................................................... 6 
LSL .................................................................................................................................................................. 6 
LSR .................................................................................................................................................................. 7 
MVN ............................................................................................................................................................... 7 
Immediate range with instructions other than MOV .................................................................................... 7 

Examples of data processing instructions .......................................................................................................... 7 

Unconditional branching .................................................................................................................................... 7 
B ..................................................................................................................................................................... 7 

Conditional branching ........................................................................................................................................ 8 
BEQ, BNE, BLT, BGT ........................................................................................................................................ 8 
BCS, BVS, BMI ................................................................................................................................................. 8 

Working with subroutines .................................................................................................................................. 8 
BL ................................................................................................................................................................... 8 
RET ................................................................................................................................................................. 8 
RFE ................................................................................................................................................................. 8 
PUSH, POP ...................................................................................................................................................... 8 

Other .................................................................................................................................................................. 9 
HALT ............................................................................................................................................................... 9 
SVC ............................................................................................................................................................... 10 
Use of PC register ......................................................................................................................................... 10 

Directives: .WORD .BYTE .ASCII .ASCIZ .BLOCK ................................................................................ 10 

Directives: .ALIGN .DATA .................................................................................................................................. 11 



Input/Output ................................................................................................................................................. 11 

Console ............................................................................................................................................................. 11 

Input ................................................................................................................................................................. 11 

Reading key presses ......................................................................................................................................... 12 

Reading/Writing files ....................................................................................................................................... 12 

Pixel graphics .................................................................................................................................................... 12 
Low-res Mode – Direct Addressed ............................................................................................................... 12 
Mid-res Mode – 64 x 48 ............................................................................................................................... 13 
Clicking the pixel area .................................................................................................................................. 13 
Hi-res Mode 128 x 96 ................................................................................................................................... 13 
HTML Colour Codes ..................................................................................................................................... 14 

Character display .............................................................................................................................................. 14 

Other interactions with the system .................................................................................................................. 15 
.Random ....................................................................................................................................................... 15 
.Time ............................................................................................................................................................ 15 
.InstructionCount ......................................................................................................................................... 15 
.CodeLimit .................................................................................................................................................... 15 

Interrupts ...................................................................................................................................................... 15 

Simulation configuration ............................................................................................................................... 16 

Profiles .............................................................................................................................................................. 16 

 

  



1 
 

Code layout & formatting 
When code is successfully submitted, ARMlite will add 

line numbers as highlighted here:  

The line numbers are purely to help the programmer 

navigate the code and to interpret error messages that 

specify a line number. 

If the code is subsequently edited and re-submitted, ARMlite will automatically discard all existing 

line numbers, and create them anew. When inserting new lines of code, it is not necessary to give 

them line numbers, nor to adjust line numbers if code is deleted or moved. However, if you do edit a 

line number, you should leave the vertical bar character (also known as ‘pipe’) in place. 

Comments 
Comments are prefixed by a double slash: //.   Comments may be added after an instruction or on a 
line of their own. ARMlite also allows ; (for ARM compatibility) or a single slash / to indicate a 
comment. 

Labels 
Labels are used to specify the location of instructions for branching, and to specify locations of data 
for loading and storing.  

Labels may be made up of upper- and lower-case alphabetic and numeric characters. They must 
start with a letter (in common with ARM, underscore counts as a letter). The label definition is 
followed by a colon e.g.  Loop1: , and may be added in front of an instruction, or on a line of its own 
(in which case, the label refers to the location of the first instruction or data value that follows the 
label). You may have only one label per memory location. If the following instruction (or .word) 
requires alignment, the label before it is aligned (for example after .byte, .ascii, or .asciz). 

Internal labels defined by the assembler all start with a dot (.). Register names are not permitted as 

labels. It is strongly recommended that you avoid using instruction names as labels. 

Case sensitivity 
Labels are case sensitive.  Instructions, directives, and register names are not case sensitive: they 

may be written in upper-case, lower-case or a mixture. 

Spaces 
Any blank lines will be automatically be removed when assembly code is submitted. A space is 

required between the instruction and the first operand (if any). If the instruction takes multiple 

operands, these are separated by commas -  additional spaces are not required, but will be ignored 

by ARMlite. Similarly, the colon defining a label must not have a space before it. If the label is on the 

same line as an instruction, it is common practice to have one or more spaces after the colon, before 

the instruction – though this is not strictly required. 

Memory 
ARMlite has a total of 1MB of memory i.e. 1048567 (8-bit) bytes in the range 0x00000 to 0xfffff. 

A single word of memory is made up of four successive bytes i.e. 32 bits. 



2 
 

All addresses specified in ARMlite code are byte addresses.  Where a word of memory is to be 

loaded or saved (LDR or STR) the address must correspond to a word boundary i.e. it must be 

divisible by 4 -  otherwise you will get an ‘Unaligned access…’ error. 

Registers 
ARMlite has sixteen 32-bit registers. There are thirteen general purpose registers – R0 through R12 – 

and three registers that also have special purposes SP (Stack Pointer), LR (Link Register) and PC 

(Program Counter). The PC is initialised to 0 and holds the address of the next instruction to be 

executed. It is incremented by 4 as each new instruction is fetched from memory to move on to the 

next instruction. The special registers may be used as general registers by the programmer (and may 

even be referenced as R13 through R15) but doing so carries risks that you will corrupt the normal 

operation of the processor, so it is best avoided. 

Instructions & Directives 
ARMlite implements these instructions (listed alphabetically here): 

ADD, ADDS, AND, B, BCS, BEQ, BGT, BL, BLT, BMI, BNE, BVS, CMP, EOR, HALT, LDR, 
LDRB, LSL, LSR, MOV, MVN, ORR, POP, PUSH, RET, RFE, STR, STRB, SUB, SUBS, SVC 

The following keywords are not ‘instructions’ (they are not translated into processor operations) but 
are ‘directives’ to the assembler (in alphabetical order): 

.ALIGN, .ASCII, .ASCIZ, .BLOCK, .BYTE, .DATA, .WORD 

For ease of programming and to align with mnemonics which are widely used elsewhere, the 
following synonyms are accepted: 

BIS (=ORR), XOR (=EOR), OR (=ORR), JMS (=BL), HLT (=HALT) 

Moving values between registers and memory 

MOV 
MOV (‘Move’) is used to place a specific value (an ‘immediate value’) into a specified register, or to 

copy a value from one register to another. MOV cannot reference memory addresses. The format is: 

MOV Rd, <operand2> 

Where Rd specifies the destination register, and <operand2> may be a source register or an 

immediate value (prefixed by #). Examples: 

MOV R0,#25    moves the ‘immediate’ decimal value 25 into R0 

MOV R5,R3   copies the value from R3 into R5 

MOV R4,SP   copies the value from the SP register into R4 

Immediate values may be specified in decimal, hex, or binary format (e.g. #0x3f, #0b1101) . 

With MOV on ARMlite the immediate value can be -225 to +225 (+/-33554432). This is large enough 

that any user or I/O label (or HTML colour) can be given as the immediate to a MOV. (Note that 

<operand2> with other instructions has a much more limited range – see later.) 

LDR, STR, LDRB, STRB 
LDR (‘Load Register’) copies a value from a memory location into a register. STR (‘Store Register) 

does the reverse: it copies a value from a register into a memory location.  LDR and STR cannot be 

used with immediate values. 



3 
 

For LDR and STR the value copied is a 32-bit word. For this reason, the memory address specifies the 

first of the four successive bytes where the word is stored  -  the address must therefore be divisible 

by four. 

Both instructions take two operands, the first specifies the register and the second specifies the 

memory address. In the simplest form, known as ‘direct addressing’, the memory address reference 

takes the form of a label or a number (specified in decimal, hex or binary). Examples of direct 

addressing: 

LDR R0,0xfc  loads the contents of the word starting at memory address 0x000fc into R0. 

STR R1,120   stores the contents of R1 into the word starting at memory address (decimal) 120. 

LDR R3,0x81  is an invalid instruction because address 0x00081 is not a valid word address (it is not 

divisible by four). The Assembler will trap this. Using indirect addressing, such as [Rx] it is possible 

to generate an invalid address dynamically, in which case this will result in a run-time error rather 

than an error on submission. 

STR R3,myLabel  stores the contents of R3 into the word defined by the label myLabel. 

LDR R4,#0xfc is an invalid instruction because LDR does not work with an immediate value. 

LDRB and STRB are like LDR and STR, but they work at byte level.  LDRB will load just a single byte of 

memory (into the least significant 8 bits of a register – setting the other bits to 0), and STRB will store 

the least significant 8-bits of a register into a specified byte of memory (not altering any 

neighbouring bytes). LDRB and STRB do not therefore require that the specified memory address be 

on a word boundary (divisible by four). For example: 

LDRB R3,0x81  is a valid instruction, and will load the contents of the single byte at address 0x00081 

into the least significant 8 bits of R3.  

‘Little endianness’ 
The contents of memory are presented on screen as whole words, not individual bytes. However, 

ARMlite uses ‘little-endian’ format: when a 32-bit word is stored in memory, in four successive 

bytes, it is the least significant 8-bits that are stored in the first byte, and the most significant 8 bits 

that go in the fourth byte. This pattern is adopted by most modern processors because it has the 

property that the same value can be read from memory at different lengths without using different 

addresses and simplifies hardware in processors that add multi-unit values a unit at a time. (E.g. 64 

bit arithmetic using a 32 bit adder or 16 bit arithmetic using an 8 bit adder.) 

You might never become aware of this little-endian pattern, unless, for example, you deliberately 

stored a word using STR, and then chose to load it back as a sequence of bytes, using LDRB. 

Indirect addressing 
The four load/save instructions support  ‘indirect’ addressing. Indirect addressing is most commonly 

used to implement ‘pointers’. 

For indirect addressing the memory address is not specified directly in code, but by a value held in a 

register. The register holding the memory address is specified as the second operand, surrounded by 

square brackets. For example: 

LDR R0,[R1]  will load into R0, the contents of the memory address that is currently held in R1.  It 

does not mean ‘load into R0 the contents of R1’. 



4 
 

STRB R3,[R4]  will store the contents of R3 into the memory address that is currently held in R4. 

Note that for LDR and STR the contents of the register must specify a word address (i.e. be divisible 

by four) – or you will get an ‘Unaligned access…’ error at runtime. This constraint does not apply to 

LDRB and STRB since those are accessing data at the byte level. 

Indexed addressing 
Indexed addressing is a variant of Indirect addressing, whereby the memory address to be used is 

calculated from two registers, commonly conceptualised as a ‘base address’ plus an ‘index’. This 

addressing mode is commonly used to iterate over a sequence of data values held in successive 

words (or, for LDRB, STRB, successive bytes –  for example representing a ‘string’ of characters), or 

to implement a mechanism roughly equivalent to an array in high-level language programming. For 

example: 

LDR R3,[R7+R10]  will add the contents of R7 (which specifies the ‘base address’) to the contents of 

R10 (the index) and use the result as the memory address, from which to retrieve the value to be 

loaded into R3. 

LDR R5,[R9-R1]  will subtract the contents of R1 from the contents of R9 and use the result as the 

memory address, from which to retrieve the value to be loaded into R5. 

ARMlite will also recognise the following syntax, which is the ARM standard: 

LDR R3,[R7,R10]   
LDR R5,[R9,-R1]   

Direct addressing 
Neither ARM nor ARMlite has a native direct address mode. What looks like a direct address is 

converted by the assembler to the form [PC+/-n] where n is the delta from the instruction after 

next to the required address or label. So, for example LDR R0,label is converted by the assembler 

into LDR R0,[PC+n] (or [PC-n]). (The Assembler works out the correct +/-n.) For programs less 

than about 1000 instructions, this is always possible. 

For larger programs, you may need to use a spare register: 

 MOV R9,#label 
 LDR R0,[R9] 

 
For [PC+/-n] the value of n can be between 0 and 4095. 

Comparison, Addition & Subtraction 
Values in registers may be compared, added, or subtracted using the instructions: CMP, ADD, SUB, 

ADDS, SUBS. 

CMP 
CMP (‘Compare’) compares the values in two registers numerically, setting Status bits based on the 

outcome. A compare instruction is typically followed by a Conditional branching instruction. CMP 

takes two operands. The first is always a register. The second is either another register (it would 

make little sense to compare the contents of a register to itself!) or an immediate value. For 

example: 

CMP R0,R1  will compare the values in R0 and R1, setting status bits accordingly. 

CMP R0,#89 will compare the value in R0 to the immediate value (decimal) 89. 

CMP #3,R2  is an invalid instruction as the first operand must be a register. 



5 
 

(It may be helpful to realise that, under the covers, CMP is subtracting the second operand from the 

first, and setting the Status bits the same way as if a SUBS instruction had been used  -  except that 

CMP discards the resulting number when finished instead of storing it in a register) 

ADD and SUB 
ADD will add the values from two registers (or from one register, plus an immediate value) and place 

the result in a destination register (which may be one of the source registers). SUB (‘Subtract’) works 

in a similar fashion, but subtracting the second value from the first. The first operand is always the 

destination register, and if an immediate value is specified, it must be the last operand. For example: 

ADD R1,R0,#3 Adds the immediate value 3 to the value in R0 and puts the result in R1 

ADD R2,R7,R5  Adds the values in R7 and R5 and puts the result in R2 

ADD R4,R4,#1  Adds one to the value held in R4 (we say ‘Increments R4 by 1’) 

ADD R5,R9,R9  Adds the value in R9 to itself (doubles it) and puts the result in R5 

SUB R1,R0,#3  Subtracts the immediate value 3 from the value in R0 and puts result in R1 

SUB R2,R7,R5  Subtracts the value in R5 from that in R7 and puts the result in R2 

SUB R2,R5,R7  Subtracts the value in R7 from that in R5 and puts the result in R2 

SUB R4,R4,#1  Subtracts one from the value held in R4 (we say ‘Decrements R4 by 1’) 

SUB R5,R9,R9  Subtracts the value in R9 from itself (producing zero) and puts result in R5 

ADD R1,#3,R0 Is invalid because the second operand may not be an immediate value. 

Note that ADD and SUB do not detect any form of overflow – this is just lost and the lower 32 bits of 

the answer kept. 

ADDS, SUBS 
ADDS and SUBS work the same way as ADD and SUB, respectively, except that they also set (that’s 

what the S stands for) the Status bits.  Thus, conditional branches may be used after an ADDS or 

SUBS without needing to have a CMP as well. 

(On a real ARM most data processing instructions, including MOV, have an S form that sets the status 

bits. ARMlite restricts this to CMP, ADDS and SUBS.) 

Status bits 
The Status Register holds the result of the last CMP, ADDS or SUBS operation - Negative (N), Zero (Z), 

Carry (C) and oVerflow (V). 

The use of the status bits depends on how the bit patterns compared (or added or subtracted) are 

interpreted. 

To take the simple cases first, Z is set if all 32 bits of the result are Zero. If the 32 bits represent a 

number, then Z would be set if that number is 0. On the other hand, if the 32 bits represented an 

instruction or four characters (or something not a normal integer) the Z bit would probably tell you 

nothing useful. 

Following a CMP, the Z bit is set if the compared values were equal (which might be useful for 

comparing 4 characters at a time, for example). 



6 
 

Similarly, N is set if the top bit of the result is set. You can use this for purely logical purposes (where 

the 32 bits are not a number), but the normal use is that in two’s complement form, a 1 in the top 

bit indicates that the number is negative (hence N). (For an unsigned number it just tells you it is 

greater than 2147483647 which is not needed very often.) 

V is only useful (on its own) if the numbers being added or subtracted are in two’s complement 

representation. V is 0 if the answer is right and V is 1 if the answer is wrong. For example, if you add 

two large (2’s complement) numbers the adder will wrap round and the result will be negative. 

Clearly this is wrong, and V is set to show you this, provided you used ADDS. (Note V is also used in 

combination with Z and N to formulate the BLT and BGT instructions – see below.) 

C is only useful if the numbers being added or subtracted are in unsigned representation. (This is also 

needed for extended arithmetic – for example when adding the lower 32 bits of a 64-bit number – 

irrespective of whether the whole number is unsigned or two’s complement.) C=1 tells you for ADD 

that the answer is wrong on an unsigned interpretation. C is therefore equivalent to the 33rd bit in 

the result. 

Because subtract was originally done by negating and adding, the C bit for subtract and compare 

follows what would have then happened. So for SUBS and CMP, the C bit works the other way up and 

C=0 means the answer is wrong on an unsigned interpretation (which is guaranteed if you are 

limited to numbers >= 0 and you subtract a larger number from a smaller). 

The Z flag is tested by the BEQ and BNE instructions for “Branch if Equal” and “Branch if Not-Equal” 

with respect to the parameter values of the last CMP instruction or compared to zero for result of the 

last ADDS or SUBS instruction. ARMlite provides the conditional branches BCS, BVS, BMI which allow 

you to test unsigned overflow (BCS), signed overflow (BVS) and negative (i.e. top bit of the result). 

These are particularly needed with ADDS and SUBS. (Note real ARM has more conditional branch 

instructions than this, and AQA has fewer than this.) 

There is a special case after compare (CMP) where the particular instructions BGT and BLT are 

available to test “Greater Than” and “Less Than” respectively for 2's complement numbers only. You 

can use these after SUBS but they don’t have any use after ADDS.  

It is beyond the scope of this manual and book, but BLT tests (N set and V clear) OR (N clear and V 

set) and BGT tests Z clear AND (N and V both set or both clear). Trust us – they do the right thing. 

Bitwise manipulation 
The following operations will manipulate values at bit level: AND, EOR, LSL, LSR, MVN, ORR. Each of 

these, except MVN, takes three operands (like ADD and SUB): a destination register, a source register, 

and a second source register or immediate value. MVN takes two operands: a destination register, 

and a single source register or immediate value. 

AND, ORR, (OR), EOR, (XOR) 
Perform a logical operation on each pair of bits in the two operands: the logical AND, logical OR, and 

logical exclusive-OR, respectively. Note that OR is recognised as a synonym for the ORR instruction, 

and that XOR is recognised as a synonym for the EOR instruction. 

LSL 
‘Logical Shift Left’. Moves each bit one place to the left, placing a 0 in the right-most bit and losing 

the left-most bit off the end. If the value represents a number, the effect of shifting one place left is 

to multiply the number by two (but any overflow is lost without detection).  



7 
 

LSR 
‘Logical Shift Right. Moves each bit one place to the right, placing a 0 in the left-most bit and losing 

the right-most bit off the end. If the value represents an unsigned number, the effect of shifting one 

place left is to divide the number by two, rounded down if appropriate.  

MVN 
MVN (‘MoVe with NOT’) is like MOV, adopting the same pattern for operands.  The difference is that 

MVN will apply a NOT operation to each of the bits from the source before storing the result in the 

destination register. (This operation is sometimes also called ‘inverting’ or ‘flipping’ the bits.) Note 

that you can MOV Rd,#-n with a much larger range of n than MVN has and it is two’s complement. 

Immediate range with instructions other than MOV  
Several instructions can take an immediate value as the last operand (sometimes listed as <operand 

2> which may be a register or an immediate value). With LSL and LSR the immediate value is 

limited to #31 because shifting any more than 31 bits would always produce a zero result. With the 

other instructions, things are complex. Values in the range #0 to #256 are always permitted. Values 

outside this range are allowed if they can be expressed as 8 consecutive bits on an even boundary 

(allowing wrap around). It is easy to see this in hex so that 0xff0, 0x3fc00, 0xd000000d will be fine 

but 0x1fe is not on an even boundary and 0x101 is nine bits wide. The assembler will give you an 

error if an immediate does not fit. 

Examples of data processing instructions 
For each of the following examples, R0 starts with 0b1110  and R1 starts with 0b1011, and all values 

not shown to 32 bits have all leading zeros. 

AND R2, R0, R1  results in R2 containing 0b1010 

ORR R2, R0, R1  results in R2 containing 0b1111 

EOR R2, R0, R1  results in R2 containing 0b101 

LSL R2, R0, #2  results in R2 containing 0b111000 (the value of R0 shifted left 2 places) 

LSR R2, R0, #1  results in R2 containing 0b111 

MVN R2, R1   results in R2 containing 0b11111111111111111111111111110100 

AND R1, R1, #13  results in R1 containing 0b1001 

LSL R2, R0, R1 results in R2 containing 0b111000000000000 

Unconditional branching 
Branch instructions potentially override the default behaviour of moving on to the next instruction in 

sequence – by specifying a new location to branch to.  A branch instruction will implement this by 

altering the value held in the PC (Program Counter) register. Unconditional branches always make 

this change (akin to a ‘GOTO’ statement); conditional branches specify the location to move to if a 

specified condition is true, otherwise execution continues with the next instruction in sequence as 

usual. 

B 
B (‘Branch’) is an unconditional branch. It takes a single operand, being either a label that will be 

translated into a memory location by the assembler, or the number of instructions (words) to jump 

relative to the current location. For example: 

B loop1 will transfer execution to the instruction defined on the same line (or immediately 

below) the label loop1. 



8 
 

B .+3   will jump forward by three instructions (i.e. skip over the next two) 

b .-5   will jump back by five instructions 

The branch encoding is done relative to the current instruction (+8) but the range is +/-223 bytes – far 

bigger than the ARMlite memory. Note that .+n and .-n calculate a distance. They do not check or 

count instructions in your program. (So, don’t use .asciz “somewhere in here” for example.) 

Note that, as with LDR and STR, when specifying the address as a label (first example above) the 

label must be aligned.  

Conditional branching 
The following instructions all represent forms of conditional branching: the branch is only performed 

if a specified condition is met, based on the values of one or more of the Status bits. If the condition 

is not met, execution continues with the next sequential instruction. 

In all cases, these instructions take a single operand, of the same form as for the unconditional 

branch (B) instruction, described above. (If you need more complex destinations you can calculate 

the address in a register and then do MOV PC,Rn ). 

BEQ, BNE, BLT, BGT 
‘Branch if EQual’, ‘Branch if Not Equal’, ‘Branch if Less Than’, ‘Branch if Greater Than’. These four 

instructions will perform the branch based on the relationship of the two values compared by the 

previous CMP instruction (or based on the result of the previous SUBS or ADDS if that was more 

recent). This determination is based on the Status bits. 

BCS, BVS, BMI 
‘Branch if Carry Set’, ‘Branch if oVerflow Set’, ‘Branch if Minus’. These instructions will perform the 

branch based on the value of a single Status bit: the C (‘Carry’) bit, the V (‘oVerflow’), and the N 

(‘Negative’) bit, respectively. 

Working with subroutines 

BL 
‘Branch with Link (back)’ is the operation for invoking a subroutine.  It makes an unconditional 

branch to the specified location, but first saves, in the LR (‘Link Register’) the address of the 

instruction to return to when the subroutine has completed i.e. the instruction following the BL. 

Be careful to save and restore LR if you call other subroutines. 

RET 
‘Return (from subroutine)’. RET is a convenience (on ARMlite) for the instruction MOV PC,LR. When 

this instruction is encountered, the processor will copy the value of LR into the PC. The result will be 

that the next instruction to be executed will be one following the BL instruction that made the call to 

the subroutine. 

RFE 
‘Return From Exception’ is used on ARMlite to return from an Interrupt processing routine (see 

Interrupts). 

PUSH, POP 
PUSH and POP work with the system stack, which utilises the top part of the addressable memory. 

The ‘stack pointer’ is maintained in the SP register. When ARMlite is started afresh, SP starts at the 

value 0x00100000 which is 1 beyond the address of the last byte of main memory.  For each word 



9 
 

that is pushed onto the stack, SP is pre-decremented by 4, so that it now points to the topmost word 

in the stack. SP is then incremented again (by 4) after each time a value is ‘popped’. This behaviour 

may be observed by single stepping through this simple example: 

MOV R0, #1 

PUSH {R0} 

MOV R0, #2 

PUSH {R0} 

POP {R0} 

POP {R0} 

Observe the values of R0 and of SP as you step through. Also, if you set the memory page number to 

fff you will see the values (1 & 2) being temporarily stored in the stack at the very end of main 

memory (bottom of the screen). 

PUSH and POP instructions may be used within general programming, if your code implements an 

algorithm that needs a stack, or if you need to hold maintain more temporary variables than you 

have available registers. (Note that if you are using Interrupts on ARMlite the system may push and 

pop invisibly to you.) 

The most common use of PUSH and POP are in subroutines and interrupts. At the start of the 

subroutine, values of some, or all, of the registers are pushed onto the stack, so that those registers 

may be used for different purposes within the subroutine.  Before exiting the subroutine (with RET) 

the original values of registers are restored by popping them from the stack.  Note that you can save 

an instruction by pushing the LR (which you need to do if you call subroutines) and popping the 

value directly into the PC at the end instead of using RET. 

PUSH and POP may take a single register as an operand. (There is nothing to stop you from 

deliberately pushing R0 and popping the value back into R1 but that would not be common practice). 

Usually, you would supply a list of registers, comma-separated and surrounded by curly braces. Only 

the general registers (R0 to R12) and the LR should be used with PUSH and POP, with the single 

exception that you can use PC instead of LR in a POP. For example: 

PUSH {R1-R4,R7,LR}  will push the values of registers R1, R2, R3,R4, R7 and LR. 

POP {R1-R4,R7,LR}  will restore those same registers. 

Note that if you were to push register values individually, via separate PUSH instructions, you would 

need to ensure that you pop them in reverse order, but when a list of registers is specified, as here, 

POP automatically restores them in the correct order (as long as the same register set is specified – 

note the lowest numbered register is pushed last). 

Other 

HALT  
HALT will halt (pause) execution at a defined place. When halted you may hit continue (the run 

button) -  though it would only make sense to do so if there were program instructions following the 

HALT.  HALT may be used to stop the program counter from running into a data area (and producing 

erroneous or unpredictable result) and/or for debugging code. (A breakpoint has the same effect, 

without requiring modification to the code, but ARMlite supports only a single breakpoint, whereas 

you can have multiple HALT instructions).  

ARMlite will recognise both HALT (the AQA instruction) and HLT (the ARM standard)  



10 
 

SVC 
SVC stands for SuperVisor Call. It is a way of a user program generating a trap into a BIOS or an 

Operating System (see interrupts below) without knowing the internal structure of the BIOS or OS. 

Since ARMlite does not have user modes or protection, and most programs will be small and stand-

alone, it is unlikely to be used often. 

Use of PC register 
You can use the PC as a source or destination register for most ARMlite instructions (except 

extended MOV with a negative immediate which does not make any sense and overlaps with other 

encodings). In many cases these are discouraged or do not work on a real ARM because the CPU is 

reading instructions ahead of the actual execution and either there is no logic to deal with the 

anomalies or the CPU would have to stall to sort them out. 

There are two deliberate cases that always are needed (and so work) a) for a BL/JMS (i.e. subroutine 

call) or interrupt, the PC saved is a pointer to the next instruction that would have been executed 

and b) for PC relative instructions like branch and direct addresses (which are implemented as PC 

relative). In case b) (and all other cases) the PC used is a pointer to the instruction after next (i.e. 

current instruction + 8). The assembler allows for the +8 when generating branches and direct 

addresses, but if you do something like MOV R4,PC you will get current instruction+8. 

If you write to the PC (B, JMS, POP, RTE, RET and MOV are the only recommended instructions) then 

you go (jump) to the address given. (If you put an unaligned value in the PC, it will generally be 

ignored and because branches are relative, it will persist. It is well known for assembler hackers to 

count to 4 in this way.) 

Directives: .WORD .BYTE .ASCII .ASCIZ .BLOCK 
These assembler directives define memory locations, and the initial contents to be given to those 
memory locations. Each directive may be given its own label for convenience (where they are to be 
used to hold variables or constants, for example), or you might declare multiple directives under one 
label, and access the individual items using Indexed addressing. (Note that unlike some advanced 
Assemblers, you cannot do arithmetic – just one value or string is permitted.) 

They are best explained by example: 

myAge: .WORD 17  defines a word of memory with the label myAge holding the initial value of 
(decimal) 17. Note you can omit the .WORD and just put the number or label name. You can use a 
label name to get its value stored in the word location (only with .WORD). 

.BYTE 0x1f defines a single byte of memory holding the initial value of 0x1f (note that this value 
cannot exceed 255 or 0xff). 

.ASCII "Hello World!" defines an ASCII string (one character per byte). The string may be 
delimited either by single or double quotes. You can use \ as an escape for \n, \\, \' or \" in the 
normal way. 

.ASCIZ "Hello World!" defines an ASCII string (one character per byte) but with a ‘null’ (Zero 
value) byte added on the end, which is not a printable character. This is how you would typically 
define a string message to be written to the console using  .WriteString (see Console) because the 
zero byte will indicate when ARMlite should stop reading characters.  

myName: .BLOCK 128 will block out the next 128 bytes (16 words) to be used for data and assigns 
myName to the start of the block . (The assembler zeros all memory so they will be zero the first time 
you run the program.) 



11 
 

Directives: .ALIGN .DATA 
These directives control the assembler. If you give a .ALIGN a label it will take the address of the 
start of the align. If you give .data a label it will be attached to the following instruction (or give an 
error if that has its own label). 

.ALIGN 256 will align the following instruction or data to the next byte address that is divisible by 
256 i.e. the next page of memory if necessary. (Note the assembler will align instructions and .WORD 
by 4 automatically.) 

.DATA sets the limit of code that is protected from modification by the program (STR or STRB). By 
default, the assembler sets this before the first data declaration (.byte, .word or .block) but you can 
use this directive to increase or reduce that. It is recommended to put all invariant declarations 
immediately after the instructions and followed by a .DATA.  

Input/Output 

Console 
The simplest way to output text is to the Console, where new text is always appended to any existing 

text, and the output scrolls when it exceeds 4 lines. In the following examples, R0 contains the 

decimal value 3000000000: 

STR R0,.WriteUnsignedNum writes out 3000000000 

STR R0,.WriteSignedNum writes out -1294967296 (value interpreted as two’s complement) 

STR R0,.WriteHex  writes out 0xb2d05e00 

MOV R1,#65 

STRB R1,.WriteChar  writes out the character A (ASCII 65). It is recommended that you use STRB 

to make it clear that you are writing a single character, defined by the least significant 8 bits in the 

register. (STR will work, but will still write only one character.) 

MOV R1,#0x0A 
STRB R1,.WriteChar  //writes a ‘Newline’ character 
MOV R2,#msg 
STR R2,.WriteString 

HALT 

msg: .ASCIZ "Hello World!"  

In the example above # indicates that it is not the message contents that is moved into R0 (which 

would not work anyway) but the memory address for the start of the string.  

Input 
Input may be requested from the console as follows: 

LDR R0,.InputNum requests user to enter a number, which goes into R0. The number may be 

entered as decimal (signed or unsigned), hex, or binary (with prefixes). However, it must be an 

integer, and within the range that may be represented in one word. 

MOV R0,#myName 
STR R0,.ReadString expects the user to enter a string (of up to 127 characters). On hitting the 

Return key, the string will be transferred, one byte per character, to the memory addresses starting 

at the address that has been specified in R0 (set up in the line above to the address of the myName 

label. At the end of the string, the system will automatically write a null (Zero byte). 

MOV R0, #myName 
STR R0, .ReadSecret works as .ReadString but the input typed is hidden 



12 
 

Note that you should define myName as 

myName: .BLOCK 128 or more because 128 bytes is the limit that ARMlite will transfer. 

Reading key presses 
For interactive applications such as games, it is useful for the user to be able to hit keys without 

requiring the program to pause and request an input.  

LDR R0,.LastKey will load into R0 the key code for the most recent key pressed (since the program 

has been running).  LDRB may also be used, since the value takes just one byte. 

LDR R0,.LastKeyAndReset does the same, but clears the record of that keypress. Calling it again 

without the user having pressed another key would result in a zero value in R0. 

The Key Code for a (or A) is 65 and for 1 is 49. By default, only numbers and letters are enabled. (See 

.KeyboardMask for how to enable other keys but beware that using any key with a Browser function 

may behave unpredictably and most punctuation characters give something completely obscure.) 

Reading/Writing files 
LDR R0,.OpenFile opens a file to read (for security though a user selection box) and puts the 

length of the file in bytes) into R0, or -1 if the operation fails. (Note that ARMlite uses your browser 

to read and write files and the exact behaviour depends your browser settings. If the browser 

returns an error to ARMlite you will get -1 in the register, but it seems more normal for ARMlite to 

be stalled until you provide a valid file.)  

LDRB R1,.ReadFileChar reads the next character of the file into R1. (LDR will also work but you 

only get one character)  

LDR R0,.FileLength reads the number of characters remaining to be read in the file, into R0.  

STR R3,.WriteFileChar adds the contents of R3 as four characters to the file output buffer. (STRB 

would write the lowest 8 bits from R3 as a single character). 

MOV R4,#myFileName 

STR R4,.WriteFile writes the characters already in the buffer to a file. The file name to be used 

is specified as a string, with R4 pointing to the start of the string (which should zero-terminated, for 

example by declaring the filename using .ASCIZ). (Note that the Browser should ask you to select or 

confirm the name and location unless your browser settings say otherwise.) 

MOV R5,#-1 

STR R5,.WriteFile  clears output buffer without writing anything. 

Pixel graphics 
The pixel graphics display is the lower of the three Input/Output areas and has three modes of 

operation. In all cases STR is used to write a 24 bit HTML Colour Code from a register to a pixel 

address (the top 8 bits of the register are ignored). 

Low-res Mode – Direct Addressed 
This is a 32-column x 24-row mapping with the individual blocks (of pixels) named as .Pixel0 

through to .Pixel767. So: 

mov r0,#.green 
str r0,.Pixel0 
str r0,.Pixel31 
str r0,.Pixel736 
str r0,.Pixel767 
halt 



13 
 

 

writes a green block to each of the four corners of the area. You could similarly treat .Pixel0 as the 

start of the area and use indirect, or indexed addressing in this example: 

      mov r0,#.red  
      mov r1,#.Pixel0  
      mov r2, #0 
loop: str r0,[r1+r2]  
      add r2,r2,#4 
      cmp r2,#128 
      blt loop 
      halt 

Notes: 

 Low-res Mode (Direct Addressed) is always available in parallel with one of the other two 

modes 

 You can read .Pixelnn (using LDR) and it will be 0xffffff initially (=white) or whatever 

value you wrote to it (Even if you changed the actual colour displayed using a different 

mode). 

Mid-res Mode – 64 x 48 
Both other modes are mapped to memory that starts at the address .PixelScreen.  By default, the 

display is configured to ‘mid-res’, a 64-column x 48-row grid of pixels.  

For example (at default resolution): 
MOV R0, #0xff0000 

MOV R1, #.PixelScreen 

STR R0, [R1]   Sets the top-left pixel to pure red. 

MOV R0, #.darkgreen 

MOV R1, #.PixelScreen 

ADD R2, R1, #256 

STR R0, [R2]   sets the next pixel down to dark green 

STR  R0, .ClearScreen clears the pixel area (the register value is ignored) 

Clicking the pixel area 
It is possible to enable the pixels for interrupt or polling when clicked (see also .PixelMask and 

.PixelISR in the Interrupts section). To find out which pixel has been clicked on interrupt read (LDR 

only) .LastPixelClicked. If you are polling, then you can test bit 2 of .PixelMask and use (LDR 

only) .LastPixelAndReset to read the value. (You could poll .LastPixelAndReset – you will get -1 

if there has been no click.) Note polling must be enabled by setting .PixelMask to 2. 

Note that the screen is cleared when you first enable (or completely disable) pixel clicks. If the 

screen is in default mid-res mode .LastPixelClicked will give you a value between 0 and 3071 (or 

-1 if no clicks yet). In hi-res mode the range is 0 to 12287. You do not have to write anything – the 

blank pixels are clickable once you have done the enable. 

Hi-res Mode 128 x 96 
Hi-res mode can be set by the program as follows: 

LDR R0, #2   use 1 for mid-res and 2 for hi-res. 

STR R0, .Resolution        (this also clears the pixel area) 

A program can read .PixelAreaSize (using LDR) and will get either 3072 or 12288 to show what is 

configured. 



14 
 

Hi-res mode works in the same manner as 64 x 48 mode. 

(Note you can use LDR to read a pixel value in mid-res or hi-res modes and you will get the displayed 

value, even if it was set by low-res mode.) 

HTML Colour Codes 
To assist with the HTML colour codes, the following are recognised by the assembler: 

.background (white), .aliceblue, .antiquewhite, .aqua, .aquamarine, .azure, 

.beige, .bisque, .black, .blanchedalmond, .blue, .blueviolet, .brown, .burlywood, 

.cadetblue, .chartreuse, .chocolate, .coral, .cornflowerblue, .cornsilk, .crimson, 

.cyan, .darkblue, .darkcyan, .darkgoldenrod, .darkgray, .darkgreen, .darkgrey, 

.darkkhaki, .darkmagenta, .darkolivegreen, .darkorange, .darkorchid, .darkred, 

.darksalmon, .darkseagreen, .darkslateblue, .darkslategray, .darkslategrey, 

.darkturquoise, .darkviolet, .deeppink, .deepskyblue, .dimgray, .dimgrey, 

.dodgerblue, .firebrick, .floralwhite, .forestgreen, .fuchsia, .gainsboro, 

.ghostwhite, .gold, .goldenrod, .gray, .green, .greenyellow, .grey, .honeydew, 

.hotpink, .indianred, .indigo, .ivory, .khaki, .lavender, .lavenderblush, 

.lawngreen, .lemonchiffon, .lightblue, .lightcoral, .lightcyan, 

.lightgoldenrodyellow, .lightgray, .lightgreen, .lightgrey, .lightpink, 

.lightsalmon, .lightseagreen, .lightskyblue, .lightslategray, .lightslategrey, 

.lightsteelblue, .lightyellow, .lime, .limegreen, .linen, .magenta, .maroon, 

.mediumaquamarine, .mediumblue, .mediumorchid, .mediumpurple, .mediumseagreen, 

.mediumslateblue, .mediumspringgreen, .mediumturquoise, .mediumvioletred, 

.midnightblue, .mintcream, .mistyrose, .moccasin, .navajowhite, .navy, .oldlace, 

.olive, .olivedrab, .orange, .orangered, .orchid, .palegoldenrod, .palegreen, 

.paleturquoise, .palevioletred, .papayawhip, .peachpuff, .peru, .pink, .plum, 

.powderblue, .purple, .red, .rosybrown, .royalblue, .saddlebrown, .salmon, 

.sandybrown, .seagreen, .seashell, .sienna, .silver, .skyblue, .slateblue, 

.slategray, .slategrey, .snow, .springgreen, .steelblue, .tan, .teal, .thistle, 

.tomato, .turquoise, .violet, .wheat, .white, .whitesmoke, .yellow, .yellowgreen 

 

Character display 
There is a 32 x 16 memory-mapped character display that overlays the pixel graphic display, to allow 

text and graphics to be displayed in the same screen.  

MOV R0,#65 
MOV R1,#.CharScreen 

STRB R0,[R1]  Writes the character A at the top left of the screen 

MOV R0, #66 
MOV R1, #.CharScreen 
ADD R2, R1, #1 

STRB R0,[R2]  Writes the character B next to the A 
 
Note that each character occupies one byte (in contrast to the pixel display where each pixel 
occupies four bytes).  With the character screen it is possible to set up four characters in one register 
and write all four to consecutive positions using STR instead of STRB -  but it is usually simpler to 
work with single characters and STRB. 
 
Only printable ASCII characters are shown. Pixels set using .PixelScreen will show up underneath 

text that occupies the same part of the display. 

Note that .ClearScreen clears both the pixel and the character area and the character area is 

disabled when you enable clicking on the pixel area. You can use LDRB or LDR to read values you 

have written, and you will get zero if you read before writing. 



15 
 

Other interactions with the system 

.Random 
LDR R0,.Random will generate a random 32-bit pattern and put it in R0. Bitwise manipulation 

operations may be used to reduce its range.  

.Time 
LDR R0,.Time loads the current time into R0, as the number of seconds elapsed since 1st Jan 2000. 

.InstructionCount 
LDR R0,.InstructionCount  gives the number of instructions executed since the program was 

first run. 

.CodeLimit 
LDR R0,.CodeLimit  gives the highest memory address used for storing the program (including 

any data areas specified in assembly code). You will get an error if the stack attempts to write to 

memory below this value. 

Interrupts 
ARMlite implements simple interrupts, and the similar SVC call. 

To use any of these you must first set up an interrupt service routine (ISR) for the ones you need. 

Five are available (write with STR): 

.SysISR – system call handler 

.PinISR – handler for the clickable button 

.KeyboardISR – handler for keyboard input 

.ClockISR – handler for clock interrupts 

.PixelISR – handler for clicks on the pixel area 

There are several control (I/O) registers. (SVC is an instruction and so is always enabled (but you will 

get an error if the ISR is not setup). The others require enabling (write with STR): 

.ClockInterruptFrequency - 0=off, otherwise the number of milliseconds. E.g. for an interrupt 

every second set 1000. Note that it is an “interval” (i.e. from the RFE or enable) not absolute time. 

.KeyboardMask – the low bit is interrupts on/off (on interrupt use .LastKey for the keyboard 

position). Bit 1 (as 1) enables the arrow keys and bit 2 enables all keys (incl. function keys!). 

.PinMask – the low bit is interrupts on/off for the clickable button. (This also has a poll option – to 

use set bit 1 to enable polling and bit 2 is set when clicked – use LDR.) 

.PixelMask – the low bit is interrupts on/off for clicks on the pixel area. (This also has a poll option  

to use set bit 1 to enable polling and bit 2 is set when clicked – use LDR.) 

.InterruptRegister is the master interrupt enable – the low bit (as 1) enables interrupts. 

To use interrupts, you need to set up one or more ISR, enable the interrupts you need, and then set 

the master interrupt enable. On interrupt, the stack pointer must be valid and two words are pushed 

onto the stack. First the flags and a record of the master interrupt bit (which will be set to 1, apart 

from on an SVC call, which may be either) and then the program counter (i.e. the address to go back 

to). (Note a real ARM does not do exactly this but the effect is the same.) The master interrupt bit is 

cleared to prevent further interrupts and the PC is set to the ISR address. 



16 
 

At the end of the interrupt service routine it should execute an RFE (Return From Exception) 

instruction which will restore the PC, the flags and the master interrupt bit to the values before the 

interrupt (or the SVC). Note that RFE unstacks two words (as pushed on interrupt) whereas RET 

would take the LR and not restore the flags or the interrupt status (as well as leaving the stack in the 

wrong place). 

In anything other than trivial examples, interrupt routines need to save and restore any registers 

they use – particularly LR if they call functions. (You can get some very hard to find bugs if clock or 

other interrupts change registers that the interrupted program is using.) 

Simulation configuration 
There are a few options which can be set as query parameters in the URL request – for example 

?data=unsigned&mem_k=64. They are: 

 data  Controls the way memory and register contents are displayed. The options 

  are unsigned, signed, hex, binary and decimal (same as signed). The default 

  is hex. 

 debug  Enables extra debugging messages (mainly alerts). Default is 0. 

 mem_k  Sets the main memory size. Range 1 to 1024, default 1024 (for 1M bytes). 

 profile Adds the class “profile-xxxx” to the body tag, no default. (See Profiles,  

  below) 

 slow_delay Controls the speed of execution in “Slow” mode. Range 2 to 999, default 40. 

  Setting 999 gives an instruction approximately every 4 seconds and setting 2 

  gives you about 130 instructions/second (the maximum speed without  

  turning the display off). (Note you can also click the Slow button multiple 

  times to speed up dynamically.) 

Profiles 
This is an area for future expansion. At present there is one profile option, player (other than the 

default) which can be selected by appending this query string to the URL: 

?profile=player 

This profile is intended for users of an application (typically a game) written for ARMlite.  It differs 

from the default view as follows: 

 The only visible program control is Load, allowing a program file to be loaded and submitted. 

(It follows that the program file must not generate any submission errors.) 

 The run controls show Play (Run), Pause, and Stop only. 

 The Pixel and Char screens are magnified x2 and shown to the right of the other controls. 


