
First steps in getting micro:bits and PCs to talk to each other Adrian Oldknow

0. Overview While the BBC micro:bit has been designed to be used as a stand-alone

device, it can also communicate with other software, such as Tera Term, Excel and Scratch,

exchanging data along a USB cable or wirelessly. This article explores simple ways to do this using

the MS MakeCode editor in Blocks mode. As an example, it demonstrates how to send live sensor

data from one micro:bit wirelessly to another, which passes it via USB to the MS Excel spreadsheet

for graphing and analysis, thus implementing telemetry. Alternative approaches are explored.

1. Introduction Along with my other `First steps’ articles, this piece is written for people who

have access to a BBC micro:bit and would like to explore ways to get the most out of it with the

minimum of technical hassle. I learned to program in a computer language called BASIC, which

was specifically written for General Studies’ students to pick up quickly and get things happening

straight away. Along with many people of my generation, I also became a fan of the Logo graphical

programming language, developed by Seymour Papert, to widen computer access to children and

beginners. In his seminal book, Mindstorms, Papert explains his vision of a community of learners,

young and old, sharing their discoveries and inventions like Samba dancers do. So that is the spirit

in which this article is produced.

2. Starting from Scratch Computing is now in the English schools’ National Curriculum

and Primary School students learn to code in Scratch. Nowadays people tend to use the word

coding in preference to programming, when really coding is only a part of programming. Codes

were developed to transmit messages swiftly and securely. It is the substance of the message

which matters most. An often used example of coding is getting a computer to display text by a

command like: PRINT “Hello World”. Programming languages, such as BASIC, Logo and Scratch,

enable us to invent our own procedures, technically called algorithms, to get computers to solve

problems or perform complex tasks. It is easy to learn the words, but the important thing is to

develop the skills to use them to say something meaningful. End of sermon! Scratch takes the

words from Logo and puts them in an environment, known as Build Your Own Blocks (BYOB), where

it is easy to drag them to develop structures. That is the basis of the way that non-experts can

develop programs for the BBC micro:bit using editors such as the current Microsoft MakeCode.

Here is a very simple example.

My program is called Make

something happen. It has three

very small blocks of code. The

first is what to do when you plug

in the batteries or press the

Reset button. The second is

what to do when you press the

A button and the third is what to

when you press the B button.

The blue items in the program come from the Basic menu, and the purple ones from the Input

menu. You can build and test your programs in the editor using the simulated micro:bit on the left.

So, if you have a computer connected to the internet, you can create programs for a free, virtual

micro:bit! There are also editors for mobile devices, like phones and tablets running Android and

Apple operating systems.

3. Digging deeper We need to understand the key difference between the design of

computers, such as my Windows 10 laptop, and the BBC micro:bit. The micro:bit is a device known

as a microcontroller, which is designed to be built into systems to make them work on their own.

That is what turns a fridge into a smart fridge. It can respond to changes in its environment. Our

little program isn’t like the programs I am used to writing for my computer. It isn’t a sequence of

instructions. It is a set of rules on what to do in different circumstances. In this case, how to

respond to different events – such as the pressing of a button. It is also designed to be able to

operate on its own without a computer. So, once the program has been transferred to the

micro:bit, it can be disconnected and will work as an autonomous device. The micro:bit is a simple

relative of the incredibly smart engine management system which looks after my Jaguar car’s V8

engine. This responds to all kinds of events, monitoring its environment with a large number of

sensors. You may already have played with some of the sensors built into the micro:bit, such as

light intensity and acceleration. Now let’s return to our simple program. So far we have worked in

Blocks mode.

Try switching to

{} JavaScript

mode. This gives

us the same set

of instructions

but in a linear,

text, format.

Same ideas,

different code.

One of the

advantages of

this format is that

it makes it easier

to store and print out. But it also uses a lot of unfamiliar symbols which make it hard to read! In

the end, though, the micro:bit can’t understand either the Blocks or JavaScript versions of our

program. It needs to receive a version coded into a series of numbers which its, so-called, machine

language can understand. The machine in question is called an ARM Mbed processor. At the heart

of every computing device is something called a processor, which sends and receives electronic

signals as pulses of high and low voltages. These are represented by the binary digits 0 (low) and 1

(high). A binary digit is called a bit, as in micro:bit. Computing devices are designed to be able to

cope with several bits at time, called bytes. A typical byte, such as 10010101, has 8 bits.

The smallest 8-bit number is 00000000 or 0 and the largest is 11111111 or 255. We are used to

working in a decimal system where we use powers of 10, such as hundreds, thousands, millions etc.

The Mbed uses the hexadecimal (or hex) system to send numbers, i.e. powers of 16. So we need 16

different symbols for the numbers 0 to 15. 0 to 9 will do fine. Then we can use A, B, C, D, E and F

for the numbers ten to fifteen. So let’s take a number like 11010111. This splits into two nibbles,

1101 and 0111. In decimal, 1101 = 1x8 + 1x4 + 0x2 + 1x1 = 13 and 0111 = 0x8 + 1x4 + 1x2 + 1x1 = 7.

In hex, 13 = D and 7 = 7. So the hex code for binary 11010111 is D7. When you press the Download

button in MakeCode, your

program is converted (or

compiled) into a hex file which

gets stored in your Downloads

folder. This is recognised by

Windows as a text file which can

be opened in MS Notepad.

This is a long file, and just the

first few lines are shown here.

Each pair of hex symbols, like FA,

CA, E0, 78, 00 and B6,

corresponds to something

meaningful in the Mbed machine

code.

4. Transferring information to and from a micro:bit If, like me, you use the MakeCode editor

on a Windows laptop, you will use a USB cable to send the hex file from the PC to the micro:bit

(m:b). The large end plugs into a USB port on the computer, and the small end into the Micro USB

port on the m:b. As soon as you make the connection, Windows recognises the m:b as an external

memory device, such as D:, just as if you had plugged in a memory stick or SD card. USB stands for

Universal Serial Bus, which transfers data as a series of 0s and 1s along a single wire. The

alternative method was called parallel, and used a much larger cable to send each of the 8 bits of

every byte of information down a separate wire. This was mainly used for printers, and older

computers would normally have a parallel port built in. If you write your programs on a mobile

device, like an Apple tablet or Android phone, you don’t use a physical connection along a wire to

transmit data with a m:b, you use a wireless Bluetooth connection instead. I would like to be able

to take data sensed from a micro:bit and send it wirelessly to my laptop, but I’ll do this in stages.

First we’ll look at sending serial data to a PC. Then how Microsoft has developed its free Project

Cordoba plug in for Excel to enable two-way exchange of data with m:b using serial connection.

The we’ll explore sending data wirelessly from one m:b to another. Then we’ll put the pieces

together and send data from m:b A wirelessly to m:b B, which then passes it over to Excel via USB.

Finally we’ll see how Clive Seager has cracked exchanging data in both directions with m:b and PC

running Scratch.

5. Reading serial data from a micro:bit on a PC This uses a free piece of software called

a terminal. Instructions on how to set up the serial connection are on the Micro:bit Serial Library

pages. The serial driver is available from the ARM mBed pages. My drivers use serial port COM7

with a baud rate of 115200. I also followed the instructions to install the Tera Term software to

provide a text window to view the incoming data. After installing and starting Tera Term you need

to enter the correct values for the Serial port and Baud rate.

We now need to adapt our little program to include some serial commands. I have played around with the

Tera Term Setup options to reverse the colours for both text and background, and to make the Font bigger.

Now we’ll try a slight variation to

see how to send a more complex

packet of information. Now

pressing A builds up a line

consisting of the text string “A”, a

comma “,” to separate it from the

next piece of data, and a numeric

value “1”. Similarly for B.

https://www.microbit.co.uk/td/serial-library
https://developer.mbed.org/handbook/Windows-serial-configuration
http://en.osdn.jp/frs/redir.php?m=jaist&f=%2Fttssh2%2F63767%2Fteraterm-4.88.exe

Here is the output as received by Tera Term. The data can then be

copied and pasted into other applications. The next step is to

explore how we can send the data directly into an Excel

spreadsheet.

6. Hacked Excel – Project Cordoba At BETT 2017,

Microsoft had a large stand in the STEAM Village, next to the Micro:bit Education Foundation stall.

A large team were demonstrating a range of projects designed for the US Middle School curriculum

called Hacking STEM. These were built around circuits including Arduino Uno micro-controllers,

connected by USB cables to Windows PCs running Excel. The image shows a glove made from

cardboard and conductive threads being used to sense hand movements. The data is relayed from

the Arduino to Excel which uses it to control a live graphical simulation. This robotic hand project is

one application of a free plug-in for Excel called Project Cordoba, developed as part of Microsoft’s

`Garage project’. I tried to find a simpler project to test the system myself.

The one I found in the Hacking STEM Activity

Library was the Telegraph project: Harnessing

Electricity to Communicate. The link took me

to the One Drive library from where you can

download the very clear pdf for the project.

Skipping to page 15 I found a simple circuit

diagram for a Morse code tapper. Instead of

making my own loud-speaker (shown by label

6), I just put a buzzer on the board. Instead of

making a clothespin tapper (shown at label 5) I

just pushed the end of the red wire (shown at

label 4) in and out of the bread-board to make and break the circuit. Fortunately the Arduino code

https://www.microsoft.com/en-us/education/education-workshop/default.aspx
https://www.microsoft.com/en-us/education/education-workshop/robotic-hand.aspx
https://www.microsoft.com/en-us/garage/profiles/project-cordoba/
https://www.microsoft.com/en-us/garage/
https://www.microsoft.com/en-us/education/education-workshop/activity-library.aspx
https://www.microsoft.com/en-us/education/education-workshop/activity-library.aspx
https://onedrive.live.com/?authkey=%21AM5yaPQqwGimxyc&cid=D1EAAFC0BDFA320E&id=D1EAAFC0BDFA320E%211496&parId=D1EAAFC0BDFA320E%211318&o=OneUp
https://onedrive.live.com/?authkey=%21AM5yaPQqwGimxyc&cid=D1EAAFC0BDFA320E&id=D1EAAFC0BDFA320E%211496&parId=D1EAAFC0BDFA320E%211318&o=OneUp

was available in a convenient file to download from the link on page 14. I followed the instructions

and flashed this from the Arduino IDE to the Uno. Finally I downloaded the Excel workbook from

the link on page 17. Because I had already been registered with Project Cordoba this opened up

with the plug-ins tab at the end of the tool bar. So I was able to use it to connect my Arduino and

to send and receive data. But when I took a closer look at the Arduino code I was shocked to see

how complex it was. I couldn’t use it to find a simple way to reduce it to just transmit or receive a

single number or string. So I decided to work out from scratch how to get data sent and received

using a micro:bit instead of the Arduino. Fortunately this turned out to be much simpler than I

expected! The clue was to investigate the final three sheets of the workbook shown on the tabs

labelled Data In, Data Out

and Settings.

Clicking on the Help tab

opens up the very limited

Cordoba manual which

runs through some of the

set up procedures.

To get a copy of the

Project Cordoba plug-in for

yourself you need to apply

using this link.

If successful you will receive an e-mail response in a day or two with instructions on how to

download and install Cordoba, and the manual.

Happy New year! Welcome to Project Córdoba, the Excel add-in that enables real time data

streaming and visualization from physical computing devices! We are excited that you are joining

our community and hope you enjoy checking out our STEM units: Harnessing Electricity to

Communicate; Analyzing Wind Speed; Increasing Power Through Design; Seismographs; Earthquake

Resistant Structures; Building Machines that Emulate Humans and Measuring Speed to Understand

Forces in Motion! Here is the link to install Córdoba on your Windows 10 computer: Installation

Link. Please remember that you need to have a desktop version of Microsoft Excel pre-installed on

your machine to be able to use Córdoba. If you don’t have it already, here is a handy link that will

take you to where you can download it. We want to make sure that the Córdoba installation

process is as easy as possible, so please follow these steps to install it.

file:///C:/Users/Adrian/Documents/CCITE%20&%20GeoGebra/Computing/BBC%20Microbit/aka.ms/morseflashcode
file:///C:/Users/Adrian/Documents/CCITE%20&%20GeoGebra/Computing/BBC%20Microbit/aka.ms/morseworkbook
https://www.surveygizmo.com/s3/3066325/Project-Cordoba
http://tinyurl.com/jykmkkl
http://tinyurl.com/jykmkkl
https://products.office.com/en-us/student?ms.officeurl=getoffice365

Three steps to installing Córdoba

1. Click on this link: Installation Link

2. This link will trigger a download.

3. Please save the file, double click the downloaded file (.exe) and complete the installation

process.

How to see if the installation was successful

1. Open a blank Excel workbook.

2. The installation will have created a new tab on your ribbon called “Project Córdoba” in

your Excel spreadsheet.

How to use Córdoba

Please find the Project Córdoba user guide attached to this email. The user guide is also available

by selecting the ‘Help’ button on the Project Córdoba tab in Excel. Each of the customized Excel

spreadsheets to visualize real time data can be found at www.aka.ms/hackingstem.

 How to uninstall Córdoba

1. Go to “Control Panel” “Programs” “Programs and Features”.

2. Scroll down to “Project Córdoba”.

3. Right click, and select “Uninstall”.

Please remember that you are one of the first few people in the world to get access to this

prototype. Your feedback is essential to making Córdoba better. We are eagerly looking forward to

working with you to improve its functionality and your experience. Our goal is to evolve Córdoba

into a seamless tool that supports you in your classroom. Please share any feedback or suggestions,

as we want to hear it all.

 Email us at hackSTEM@microsoftcom or

 Share your comments on the Project Cordoba Forum

We look forward to learning from you! Kind regards, Hacking STEM team @hacking_STEM

Terms of Use

http://tinyurl.com/jykmkkl
http://www.aka.ms/hackingstem
mailto:hackSTEM@microsoft.com
https://microsoftgarage.uservoice.com/forums/551830-project-c%C3%B3rdoba
https://twitter.com/hacking_stem
http://tinyurl.com/zathzcj

7. Hacking Cordoba and Excel to receive serial data from a micro:bit The first step is to

open a New Excel workbook from the File menu on the Morse Code Excel workbook. I was a bit

surprised to find that the vital extra 3 worksheet tabs (Data In, Data Out and Settings) were now

missing, but I ploughed on regardless to see if I could set up the sheet to talk to my micro:bit. After

plugging in the m:b, I used

the Connect a Device

command from the Data

Sources menu. I was

pleasantly surprised to find

the micro:bit was recognised

as an mbed Serial device, and

that it told me that it was

connected to the COM 7

port. It’s not obvious what

to do next, but the clue is try

the Advanced tab. This opens up the Cordoba’s Console

which acts like the Tera Term terminal to show you the

data stream. It also allows you to enter the correct

baud rate, which is 115200 bits per second. Now click

on the mbed Serial Port icon and you should get a

message.

If you click on OK you can first use

Start Data and then Stop Data from

the Data Streaming tab. Now you

find that three extra worksheet

tabs appear for Data In, Data Out

and Settings. The console shows

that Excel has transmitted a

sequence of 10 commas. Now it’s

time to take a look at the Settings

tab to see what control we have

over the way data is transmitted

and displayed.

The main controls we will use are the

number of Data channels and the number of

Data rows. For my little experiment I will

only use 2 channels at most. In our Tera

Term example we sent data in parcels

containing a string and a number, so 2

channels will be fine. The number of rows

affects how much historical data Excel holds

on to. I will make this fairly small to start

with so we can see how the data-stack builds

up when we start receiving m:b data. Let’s

try 6 for starters!

Here is the Data In

sheet set for use with

our latest version of the

Send Something Serial

micro:bit program. The

comma delimiter in the

packet of data we send

from the m:b ensures

that the first item gets

written to channel CH1

and the second to

channel CH2. When you

select Start Data

nothing will happen

until you begin pressing

the A or B buttons on

the micro:bit. If nothing happens then it may be that you need to use Advanced again to make sure

the correct baud rate is being used. You should see that the data in the table fills up from row 13.

Once all the rows are full the data should scroll so that the latest 6 items are visible.

8. Sending data from Cordoba to micro:bit First we will set up a new blank sheet for the

experiment and get it prepared for micro:bit communication as above. Now we will make it

generate a random digit and character to send to the micro:bit. The Data Out sheet looks like this:

We just have two output channels as

before. In cell A5 we enter the

formula: =RANDBETWEEN(1,9) and in

B5: = CHAR(RANDBETWEEN(65,90)).

Now you can use the Advanced tab to

open the Console and view the output

list as you press Start Data and Stop

Data. This will transmit packets of data

such as “5,P” with a comma as

separator. After each output, Excel

recalculates the spreadsheet so we get

new values for CH1 and CH2. The

trouble is that the micro:bit can’t

distinguish a number from a character

and treats all incoming serial data as

strings. So in order to write the receiving code in MakeCode we must get it to (a) read a whole 3

character line into a string, (b) store the first character in string CH1, (c) store the third character

into string CH2, (d) convert CH1 into a number and display it, (e) have a rest, (f) display string CH2,

(g) have a rest, and then repeat the process until told to stop by pressing button B.

The brown string handling commands, such as parse to integer, come from the Advanced, Text

menu. So now we have achieved two way communication between a micro:bit and a PC running

Excel with the Project Cordoba plug-in. Coding the micro:bit for serial communication is very much

easier than I had expected, based on the previous Arduino experience. If you don’t have Excel or

can’t get hold of the Cordoba plug-in, the techniques will work fine with Tera Term.

9. Working in Excel without Cordoba In April there was an interesting blog by Yidal Edery on

Excel and Micro:Bit: Hacking for fun and creativity. This explains how to create your own macro in

Visual Basic with Excel, and use it to create a dynamic data-logger. I very much hope that Microsoft

https://techcommunity.microsoft.com/t5/Excel-Blog/Excel-and-Micro-Bit-Hacking-for-fun-and-creativity/ba-p/63603

put Project Cordoba on open release very soon, as it is quite easy for even a beginner to use. But,

for a more experienced developer than me, the VBA macro approach opens many doors in the

meantime. Now we have the basic tools for two-way communication, we can start to develop

some powerful applications connecting micro:bits to PCs. I will now try to build a simple data-

telemetry system.

10. Sending data from a micro:bit wirelessly

to another, and passing it serially to Excel

Here I will try to send accelerometer data from

micro:bit A using Radio commands to micro:bit B,

which will then use Serial commands to send the

data to Excel with Cordoba. It is unbelievably

easy. The upper screen shot shows the sending

program for the stand-alone micro:bit. The lower

one shows the receive-and-send program for the micro:bit

attached to the laptop. As we are only sending one channel of

data, we can adjust the settings on Excel.

So that I can work on the stored data, I have set the number of

data rows to 200. The received table of data can easily be

graphed as shown in the screen capture.

11. Capturing simple harmonic motion with a micro:bit

Now we have got the basics sorted out, we can go live with a dynamics

experiment. I have strapped a micro:bit onto a heavy wooden elephant,

called Ellie, who merrily bounces up and down on a spring.

We just need some slight

variations in each of the

programs above. In the sending

program we want data to start

being logged when it receives a signal from the receiving micro:bit. So I have decided to use button

A on the receiver to send a string to the transmitter which will trigger the data-logging. The

program has four blocks. The `on start’ block sets up the Radio group, displays `R’ for `Ready’ and

sets the time between samples as 50 milliseconds, and the experiment length as 200 samples. I

have kept an `on button’ block so I can do a test run without having a second micro:bit set up. This,

and the `on radio’ block, both call the function `senddata’ which does the data collection and

transmission. The core of the function is a counted loop.

The receiving program

has three blocks. The `on

start’ block sets up the

radio, displays `R’ for

`Ready’, and initialises

the variable called

`count’. The `on button’

block just transmits

string `G’ for `Go’ to the

sending micro:bit. The

`on radio’ block writes 2

values, separated by a

comma, into a line consisting of the value of the `count’ variable and the received number which

will be Ellie’s current acceleration. It also increments the `count’ variable.

So once we have downloaded

and flashed the programs to

the respective micro:bits, we

just have to set up the Excel

Cordoba spreadsheet. In the

`Settings’ tab we can set the

Data interval to 50 ms, the

Data rows to around 200 and

the Data channels to 2 (count

and acceleration). Now, with

the receiving micro:bit connected, we can connect the micro:bit (mbed device) to COM 7 and use

the Advanced console to check that the Baud rate is 115200 bits per second. So now is the time to

set Ellie bouncing, and then get back to the

laptop. Click on `Start Data’ and then button

A. With luck, the transmitting micro:bit now

displays `T’ and starts transmitting

accelerometer data to the receiving

micro:bit. This combines them with the

`count’ values and writes them as serial lines

to Excel. As the data is received so it

appears in the Console, if opened, and fills

up the cells in the first 3 columns of the

`Data View’ sheet.

Once the data has been collected you click

on `Stop Data’. Now you can play with

them within Excel or copy and paste them

to some other application, such a Vernier’s

Logger Pro 3, or the open-source, free

GeoGebra software. I have renamed the

second tab in the Excel file as `Data view’.

The data from CH1 and CH2 have been

copied and pasted into Columns A and C. Column B multiplies the `count’ values in Column A by the

`gap’ value of 0.05 seconds (i.e. 50 ms). Column D divides the accelerations by 1000 and subtracts

the acceleration due to gravity (9.81) to give Ellie’s actual accelerations in ms-2
. Below is an analysis

carried out by copying and pasting data from Excel into Vernier’s Logger Pro 3. I have selected to fit

a Model to the data, and adjusted the parameters for a sine function fit by hand to make a manual

fit. I could also have taken a video clip of Ellie in motion and synchronised it with the data.

https://www.inds.co.uk/product/logger-pro/

You can use Tera Term in place of Excel to read and store the stream of comma separated data to

copy-and-paste into Windows applications, such as Logger Pro 3 or GeoGebra. Vernier have their

own Wireless Dynamic Sensor System which pairs and transmits data using Bluetooth. So it should

be possible to use a micro:bit directly as a wireless sensor system for Logger Pro 3!

Here is a similar treatment of Ellie’s data using GeoGebra’s spreadsheet view. I have used a `2-

variable regression analysis’ and again fitted a sinusoidal model. Here GeoGebra has computed the

best-fit parameters automatically.

https://www.geogebra.org/download
https://www.inds.co.uk/product/wireless-dynamic-sensor-system/

GeoGeobra developed its own Sensors App for mobile devices, which could transmit data from their

built-in sensors to GeoGeobra on a PC using the Internet, and this was developed further by the

Hungarian Geomatech project into the Geomatech Sensors App. Again it would be great if there

was a simple Internet or Bluetooth connection which allowed data sensed by the micro:bit to be

imported directly into GeoGebra.

12 Using Radio commands to send data packets One of my reasons for doing this work was to

learn more about the Serial commands for the micro:bit. The MakeCode website does have

Reference Documentation for each of the blocks, but this is not always helpful, or up-to-date! For

example, the Text blocks aren’t shown in the Reference Manual but are here if you search for them.

I have used two of the Radio commands in the last example. We sent a data stream using the radio

send number command, and a single string using the radio send string command. So I was curious

to see if we could send a collection of possibly different types of data in the way we did by building

data lines with the Serial commands. Google searches didn’t reveal anything helpful for blocks, just

for Python. So I decided to see if I could crack how to use the radio send

value command.

The worked example, to broadcast

acceleration, wasn’t very helpful, so I decided

to try to send all 3 of the accelerations sensor

readings separately. By giving them names

such as `x’, `y’ and `z’, I hoped that I could write

a receiving program to build them up into a

serial line to send to the PC.

So here is a simple modification of the Sending program.

Actually all it does is to replace the single radio send

number command in the senddata Function with three

radio send value commands like:

In the Transmitting program we will need to use the

equivalent on radio received name value block:

I’ve split the

Transmit program into four blocks. The `on start’

and `on button’ blocks are the same as before.

The `on radio received’ block has been extended

using Logic blocks, and also calls a Function named

`serialline’. The first two `if’ commands store the

x and y data values into variables CH2 and CH3.

The third does the same for z in CH4, but also

https://www.geogebra.org/m/Fe8f3ptB
https://play.google.com/store/apps/details?id=hu.geomatech.data&hl=en_GB
https://makecode.microbit.org/reference
https://makecode.microbit.org/reference/text
https://makecode.microbit.org/reference/radio/send-number
https://makecode.microbit.org/reference/radio/send-number
https://makecode.microbit.org/reference/radio/send-string
https://makecode.microbit.org/reference/serial
https://makecode.microbit.org/reference/radio/send-value
https://makecode.microbit.org/reference/radio/send-value

triggers the act of composing the serial line to send to the PC. It updates

the count variable and then calls the `serialline’ Function. That puts the 4

numbers together in a data line separated by commas. We can run a quick

test using Tera Term. The we are all set to go live by setting Ellie on a more

interesting ride swinging up and down and round and round!

Much easier than I was expecting! So the `radio send value’ and the `on radio received name value’

combination give a powerful way to exchange data wirelessly between a pair of micro:bits and the

PC. I will finish this article with a quick look at one way to use Bluetooth for the connection.

13 Using Bluetooth to connect micro:bit to Scratch

This was developed by Clive Seager of Revolution

Education in Bath. The free App from the PicAxe

site is called S2Bot, and provides an interface for a

wide range of robotic, and electronic, devices to

exchange data with the offline version of Scratch

running on a computer.

In order to connect effectively it is designed to be

used in combination with a Bluetooth Low Energy

(BLE) device such as the BLED112 bluetooth dongle,

costing c£12. If your PC has Bluetooth built-in, you

will need to turn this off first. When the dongle is

plugged in, you can select `BBC micro:bit’ from the

drop down menu at the top left, and you should see

the green `Scan for devices’ tab appear. In order to

transmit data over Bluetooth, the micro:bit has to

http://www.picaxe.com/s2bot
http://www.picaxe.com/bled112

run a communications program. This is called

microbit-s2bot.hex. It can be downloaded from the

menu button at the top right of the S2Bot window.

Select the `Program micro:bit’ link and you will

invited to download and save it to a folder on your

PC. Once this has been done, you can connect your

micro:bit with the USB cable and send the file to it.

When it has finished flashing its led, you can

disconnect the USB cable and connect a battery to

the micro:bit. Micro:bit will now ask you to 'DRAW A

CIRCLE' to calibrate the sensors. Do this by tilting the

micro:bit around until all the outer LEDs are lit. You

should then see a smiley face to show that

calibration worked. If instead you see a triangle of 3

dots disconnect the battery and then try the

calibration again. Now you are ready to connect by

pressing the green `Scan for devices’ button on S2Bot.

You should see the name of your micro:bit ready to

connect. Click on the name and it should turn green, and

the letter `C’ (for `connected’) will appear on the m:b.

After a few seconds you will see some of the values

sensed from the m:b appear on the App’s display. Close

the window and you should see that there is now a green

dot showing that you have a BBC micro:bit connected. As

well as seeing the sensor’s readings you can also test the

2-way connection by pressing the blue `Test’ button. If

your micro:bit is in a Kitronik M1-power case it will have a

buzzer attached to pin P0, or you connect your own to

make a `beep’ – or just display `Hello’ on the led array.

Now you have connected a BBC micro:bit to the PC using

a Bluetooth Low Energy transmission, and can see that it

has 2-way communication. So in theory any application

running on the PC should be able to use it connect with your

micro:bit. I hope this could be possible with apps such as

Excel, Logger Pro 3 and GeoGebra. For now, though, we will

show how Scratch uses it for 2-way communication. You

need to install the offline Scratch editor which can be

downloaded from here. You will need to install the Scratch

template which adds the m:b command blocks. Use the

menu to make the `New Scratch template’.

https://scratch.mit.edu/download

Store the resulting `microbit_template.sb2’ file in a suitable directory.

Now open the Scratch editor and use `File’ to `Open’ this file. Select

`More Blocks’ to see the extra commands now available in Scratch to work

with the connected micro:bit. The first two are outputs from Scratch to

the micro:bit’s led display and sound output. The next two respond to

the micro:bit’s buttons A and B. The next 7 respond to some of the

micro:bit’s on-board sensors (not light nor magnet field). The last two

read analog values from pins P1 and P2. But you can’t write to them (yet).

So here is an example program to log some compass data and to use it to

control Scratch’s display.

The first command calls the `Set up’ block. Let’s start there. We use

the `Data’, `Make List’ command to create two lists called `timedat’

and `bitlist’, which will hold the times and sensed data for the

experiment. We need to hide these and make Scratch point right.

Then we send a `C’ to the micro:bit to show we’re clear to start. We

have created a variable `bitdata’ to hold the micro:bit’s bearing and

display it; also the variable `gap’ to set the interval between

readings. We reset the clock and display a message to press button A

on the m:b to start the collection. The loop just shows the time going

by, until button A is pressed. Then we play a sound on the micro:bit

and remove the message, before moving Scratch to the right half of

the screen. Now we are ready to start storing values into the two

lists, as well as using the `bearing’ value to make Scratch point in

different directions.

(Note. I have been unable to make S2Bot work properly since the

most recent update to Windows 10. The micro:bit displays `C’ and `D’

when S2Bot opens and closes the connections, but no data actually gets received. I hope someone

can find the cause and share the solution. It worked fine on the previous version of Windows.)

Now back to the main program. When the green flag is

clicked we want to call the `Set up’ block just created above.

We create two new data variables, `tim’ and `count’, and

give them initial values. We want each run of the program

to create fresh data lists, so we delete any previously stored

data, and then display to empty lists. For this

demonstration we only have a short counted loop to create

10 sets of readings. We write the current value of the `tim’

variable into the current line of the `timedat’ list, and the

current value of the m:b’s `bearing’ into the corresponding

line of the `bitlist’. Then we increase the `count’ variable by

1 ready to write to the next line, and increase the `tim’

variable by `gap’. Then we use the m:b’s `bearing’ to

control the direction Scratch is heading. We have a pause

of length `gap’ seconds before repeating the process.

Finally we display the value of the elapsed `tim’, and make

Scratch display a message. Remember to save your

work!

Now we have seen the mechanics of writing Scratch

programs accepting micro:bit sensor input, the world

is, as they say, your oyster. If you want to add your

own sensors on pins P1 or P2, then Scratch will read

these as adc1 and adc2 (for `analog to digital

convertor’.) My final example uses pin P1 with a

variable resistor (potentiometer) to make something

happen at a threshold value.

I have put ticks by the micro:bit Data

variables `adc1’ and `adc2’ so that

Scratch displays their current vales.

Pin P2 is not connected, so the value

stays constant at roughly zero.

Trimming the potentiometer

attached to pin P1 returns values

varying between around 200 and

250. So I have chosen my threshold

value as 220. The little program just detects when the incoming voltage is greater than the

threshold and makes Scratch display a message. There are lots of ways which you can build simple

circuits and add additional sensors to use the m:b to control Scratch objects.

14. Back to BASICs I began this journey by referring to the BASIC programming language. So

that’s where I’ll finish. There is a free version of BASIC for Windows which has support via serial

cable for the BBC micro:bit. It is called FUZE Basic and can found here. This will communicate with

a number of devices such as Raspberry Pi and Arduino. On the Fuze web page there is the link to

download the hex file you will need to install on your micro:bit. There is also a link to the reference

manual where pages 249-251 explain the commands relating to the BBC micro:bit. Here you can

both read and write to the micro:bit’s

pins. You can find out more in

sections 8 and 9 of my `First steps in

Computing with the BBC micro:bit’.

 15. Afterthoughts I deliberately set out to explore how to set up and use data connections

between micro:bits and PCs by just using the currently available blocks in the MS MakeCode editor.

I continue to be amazed at the power and versatility of this combination across the spectrum of

teaching , learning and using STEM subjects in schools. MakeCode is free and the micro:bit, at

c£15, costs less than a round of drinks for the family at the local pub! (Of course many secondary

schools also have stocks of undistributed micro:bits they received in Summer 2016.) In my First

steps in robotics with a BBC micro:bit, I set out explore whether this combination would open up

simple cross-curricular micro:bit robotics projects to Primary Schools at Key Stage 2. Now, with the

capacity to work with existing software such as Excel, GeoGebra, Logger Pro 3, Scratch and BASIC, I

am also convinced we have ideal tools to support their use across STEM subjects including

Computing, Design Technology, Mathematics and Science. Coupled with imaginative learning

resources such as `micro:bit in Wonderland’, these extend to other aspects of the curriculum such

as Art & Design, English, Geography, History, Sports and Wellbeing. Free tools, such as Microsoft’s

Project Cordoba, PicAxe’s S2Bot and the Bitty DataLogger, are paving the way to making the

micro:bit very easy to use in many powerful ways. I very much hope these will continue to be

developed, and that others will follow.

Of course, the blocks approach to programming is only one way to bridge the technologies.

Teachers, students and supporters of education have the combination of skills with Python, Mbed,

C++, VBA etc to extend the versatility, almost ad infinitum. What I hope most sincerely is that we

can combine forces so that those with the skills to develop the tools put them to good use for the

benefit of learners and teachers across the STEM, and other, subjects and across the age range.

https://www.fuze.co.uk/download-fuze.html
https://fuzebasic.com/bin/FUZEBASIC_Programmers_Reference_Guide_15May2017.pdf
https://fuzebasic.com/bin/FUZEBASIC_Programmers_Reference_Guide_15May2017.pdf
https://www.stem.org.uk/system/files/community-resources/2017/01/First%20steps%20with%20microbits%20for%20control%20and%20physical%20computing.pdf
https://www.stem.org.uk/system/files/community-resources/2017/01/First%20steps%20with%20microbits%20for%20control%20and%20physical%20computing.pdf
https://www.stem.org.uk/community/groups/154827/first-steps-robotics-bbc-microbit/421906
https://www.stem.org.uk/community/groups/154827/first-steps-robotics-bbc-microbit/421906
https://www.stem.org.uk/community/groups/154827/first-steps-robotics-bbc-microbit/421906

