
DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

1

Teaching Computing:

challenges and successful strategies

reported by school teachers

Sue Sentance, King’s College London, UK

Andrew Csizmadia, Newman University, UK

Abstract

Teachers of Computing in school were asked about successful strategies that they used in the classroom

as well as challenges that they faced. In a time of curriculum change in this subject, the perspectives of

these teachers are useful for schools to address and implement. Challenges faced by teachers can be

analysed as being either intrinsic to the teacher or having an external cause, and can be something

relating to their own practice or to the challenges faced by students. We find that teachers’ own content

knowledge and students’ understanding of the subject is more challenging to them than lack of

resources, issues around engaging students, and time and assessment issues. In response to this, teachers

recommend a range of pedagogical strategies to support students’ understanding which we incorporate

practical, hands-on approaches, contextualising abstract concepts, incorporating collaborative work. We

identify these successful strategies as emanating from a constructivist view of teaching which these

teachers feel works to support understanding in Computing. We highlight the need for teachers to adopt

strategies that support the development of resilience in a subject that requires a lot of practice and

learning from failure.

Keywords: Computer science education; school computing, in-service teacher education; computing

curriculum

1 INTRODUCTION

Computing i is being introduced as a new subject in the school curriculum in many countries, and as an

important part of informal learning opportunities in others. This brings with it both excitement and challenges,

as for any new subject. For teachers facing curriculum change, how to teach it is very pertinent. Introducing

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

2

new content does not merely mean that teachers have to equip themselves with new subject knowledge, which

of course in many cases they do (Brown et al., 2013; Sentance, Dorling, & McNicol, 2013; Thompson & Bell,

2013). Teachers also need to learn appropriate pedagogies for delivering a new subject, particularly in those

aspects of computer science that relate to algorithms, programming and the development of computational

thinking skills.

Recent literature relating to computer science education in school highlights a number of ways of making

computer science concepts accessible, engaging and fun, and more importantly, giving students a deep

understanding of these concepts.

A discussion about pedagogical approaches to teaching Computing can be related to the teachers’ pedagogical

content knowledge (PCK), that is, the knowledge that a teachers has about how to teach their subject (Shulman,

1986). But how does a teacher develop this PCK for teaching Computing? We hope initially through good

initial teacher education, but also through professional development, sharing with other teachers, and learning

from experience.

Constructivist theory, based on the work of Dewey (1938), Piaget (1950) and Bruner (1996) suggests that

learning is a cumulative and active process during which the Student constructs knowledge and meaning for

themselves as they learn, connecting with, and explaining new knowledge in terms of, what they already know.

Constructivist learning theories applied to computer science emphasize the active, subjective and constructive

character of knowledge, placing students at the centre of the learning process (Ben-Ari, 1998). Specifically,

constructivist learning, based on students' active participation in problem-solving and critical thinking, has

profoundly influenced the teaching of programming (Ben-Ari, 1998).

Experiential learning that stems from constructivism describes the design of activities which engage students

in a very direct way. Working with tangible real world objects is a central tenet of Papert's constructionism

(Papert, 1991) (which builds on constructivism). Thus, constructivist principles support the strategies of using

more kinaesthetic and active approaches to teaching in the computer science classroom.

The “unplugged” style of activities which originated with the CS Unplugged project in New Zealand (Bell,

Alexander, Freeman, & Grimley, 2009; Nishida et al., 2009) has resulted in many related, kinaesthetic activities

which stimulate an understanding of a concept in a very concrete and practical way. CS4FN (Computer Science

for Fun) (Curzon, McOwen, Cutts, & Bell, 2009) have generated many engaging activities and approaches by

emphasising the importance of analogy as well as a kinaesthetic activity. Other research has highlighted the

importance of providing a real world context for learning and relating it to students' interests and understanding

and the value of a rich discourse regarding concepts (Grover & Pea, 2013).

Another key consideration in computer science pedagogy needs to be the development of computational

thinking skills. Computational thinking was only recently popularised as a concept in 2006 by Wing (Wing,

2006) but teachers of computer science have been facilitating these skills in their students as long as this subject

has been taught. For teachers in England, guidelines have been developed recently suggesting how

computational thinking can be explicitly taught as part of the new curriculum (Curzon, Dorling, Ng, Selby, &

Woollard, 2014).

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

3

Programming is the aspect of computer science in school which is perceived to be the most challenging. A

range of activities can be used that allow students to collaborate and construct problem solutions. As an

example, the following suggestions, drawing on a constructivist view of learning, are made by Van Gorp and

Grissom:

 Code walkthroughs

 Writing algorithms in groups

 Insert comments in pairs into existing code

 Develop code from algorithm in pairs

 Find the bugs in code (Van Gorp & Grissom, 2001).

Reading and tracing code is also important in supporting the learning of programming has been demonstrated

(Lopez, Whalley, Robbins, & Lister, 2008) and being able to do this is a pre-cursor to the problem-solving

needed to write code (Lister et al., 2004). Lister later describes that novices need to be able to trace code with

more than 50% accuracy before they can begin to confidently write programs of their own (Lister, 2011). In

our study we were interested to see which types of strategies were being used in the classroom by the

participants, and how they were supporting the development of strategies in reading, writing and tracing code.

Figure 1: Finger and Houguet (2007): Intrinsic and extrinsic challenges for teachers

The implementation of Computing involves a change to teachers’ practice (Thomson et al, 2013) in both their

subject knowledge and pedagogical knowledge. With respect to the introduction of technology in classrooms,

a different context, it can be seen that there is an intersection between teachers' knowledge, beliefs and culture

(Ertmer and Ottenbreit-Leftwich, 2010) and this may be the same for Computing. Teachers within a context of

change face many challenges. We draw on the work of Finger and Houguet (2007) who, also working in the

area of adoption of technology into the curriculum, describe a range of intrinsic and extrinsic challenges that

teachers face in moving from the intended to the implemented curriculum (van den Akken, 2003). Although

this work is in a different domain, this analysis is relevant in this case, or perhaps in any incidence of curriculum

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

4

change. Figure 1 shows an extract (the relevant parts) of the conceptual framework used by Finger and Houguet

in their analysis.

In this paper, statements made by teachers who are currently teaching Computing in either primary or

secondary schools have been coded, categorised and analysed, describing both successful strategies for

teaching and the difficulties they face. The teachers' perspective gives us some views on what works for real

teachers in their classrooms. The following sections describe the study in some depth.

1.1 Research Focus

In this study we asked a large number of active Computing teachers how they recommend teaching the subject,

in order to find out which strategies work well in practice. We balanced this with asking teachers about

particular challenges they faced in teaching Computing. Our research questions are quite simply the following:

 What pedagogical strategies do teachers report work well for teaching computer science in school?

 What challenges do teachers report that they face?

Black et al carried out a study in the UK where they asked teachers how they felt they could make the subject

interesting (Black et al., 2013). The key aspects that they identified were the importance to teachers of making

Computing fun and relevant. In carrying out our research we were interested to see whether the teachers’

comments aligned with this study; in addition we asked more specifically for actual strategies that teachers use

in their classroom that they feel to be effective.

This paper focuses purely on the teachers' perspective in addressing these questions. Diethelm et al. emphasise

the importance of the teachers' perspective to our understanding of computer science education as the teacher

“may work on many different abstraction levels or apply very different teaching methods for the same topic of

the curriculum” (Diethelm, Hubwieser, & Klaus, 2012). We wish to identify what these methods are, in

particular identifying common themes that may help to provide guidance for teachers new to teaching the

subject, as well as providing actual examples of teachers using effective strategies as we enter a phase of

education when more and more students are studying computing in school.

In the next section the study carried out will be described. We will then report on the results of the content

analysis that was used to analyse the responses of the teachers. We identify those aspects that require a whole

new style of teaching for some teachers. We then draw out how this can contribute to the general area of

pedagogical content knowledge in the subject, and then suggest strategies to overcome intrinsic challenges

facing teachers.

2 THE STUDY

2.1 The context: change in the curriculum

The UK has seen fast-paced change in the area of computer science education in the last few years (Brown et

al., 2013; Brown, Sentance, Crick, & Humphreys, 2014). The state of computer science education is different

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

5

in the four parts of the UK, with England having just implemented an ambitious new curriculum in Computing,

to be taught from ages 5-16, and with a strong focus on computational thinking. This has been preceded by two

years of preparation, as new qualifications were introduced and the draft curriculum proposed. Many schools

and teachers in England had implemented elements of the Computing curriculum prior to the official starting

date of the Computing Programme of Study in September 2014, as a void was left by the disapplication of ICT

in January 2012 (Brown et al., 2014).

In the UK there is a strong subject association for computer science teachers, Computing At School (Brown et

al., 2013). Through this grass-roots community of practice teachers are able to share resources, share

experiences and attend local events. The participants of this study were to a very large extent members of this

community. In the data collected in this study, they describe the experiences, successful strategies, and also the

frustrations, of teachers who have begun to teach Computing in school over the last few years.

The Computing Programme of Study for the new English Curriculum (Department for Education, 2013) is

based on computational thinking principles, and thus teachers of computer science welcome guidance on how

to deliver computational thinking skills; which is beginning to emerge (Curzon et al., 2014).

2.2 The study: methodology

A wide-ranging survey was carried out in February 2014, specifically targeting members of Computing At

School (CAS), although invitations were extended widely. The survey was publicised via the CAS forum, as

well as through social media channels. The survey included questions about teachers’ location and work

situation and also the amount of Computing they taught, the confidence they had in their skills to do so and

whether they were involved in examination classes. The survey also included many other questions about

participation in professional development activities and engagement with Computing At School in general,

which are not reported on in this paper.

As one aspect of the survey, teachers were asked if they optionally wished to contribute free-text answers to

the following four questions about their teaching.

1. What good techniques/strategies have you found for helping students to understand programming?

2. Please describe any good techniques/strategies you use for helping students to understand other

aspects of Computing?

3. What difficulties, if any, have you experienced teaching programming?

4. What difficulties, if any, have you experienced teaching other aspects of Computing?

In the context of this survey, teachers in the England understand "other aspects of Computing" to be non-

programming topics in the curriculum, which include learning about hardware, networking, data representation

and logic (Department for Education, 2013) .

1417 members completed the wider survey (1126 of whom were practising teachers), with 339 teachers

contributing at least one free text answer to the free text questions. In this paper we primarily focus on the 339

responses given by this self-selecting group of teachers but include reference to their other answers to survey

questions where relevant.

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

6

The data was collected by an online questionnaire which was then input into qualitative data analysis software.

The data consisted of the four free text questions described above, plus responses that these teachers gave to

the other questions in the wider survey.

Table 1: Coding scheme used (strategies)

Strategies – coding scheme used

Algorithms (link to) Games Relate to real world activities

Block to text strategies (use of) Give feedback immediately Robotics

Break down/decomposition Interactive lessons Scaffolding

Celebrate progress Keep simple Start children young

Code manipulation Learn theory through coding Tangible interfaces

Collaboration Learn through examples Team coding/pair programming

Computational thinking Learn through mistakes Tutorials

Contextualisation Lots of practice/Little and often Unplugged strategies

Demonstration and modelling Make it achievable (break down) Use of videos

Develop troubleshooting skills Make it fun Use of examples

Differentiation Mathematical skills Use of hands-on experiences

Discussion and questioning Minimise syntax Use of pseudocode

Emphasise problem solving Online learning Use of simple IDEs

Emphasise similarities Peer mentoring Use of variety of activities

Flipped classrooms Provision of support Use of visual prompts

Flowcharts Reference to particular software Work at own pace

The data was initially coded in an inductive manner with respect to emerging themes, following the guidelines

in (Mayring, 2000). For the challenges, the themes were then grouped to facilitate further analysis. A set of

codes was then developed for the second coding. The coding scheme used for strategies is shown in Table 1

and the coding scheme for challenges shown in Table 2. The data was re-coded and verified by the two authors

to ensure agreement on the interpretation of the teachers' statements.

Table 2: Coding scheme (Challenges)

Challenges – coding scheme used

Teacher Teachers and assessment Student Digital divide

Teachers and coding focus Gender issues

Teachers and differentiation Students and resilience

Teachers and digital literacy Students and documentation

Teachers and dry topics Students and expectations

Teachers and funding Students and instructions

Teachers and lack of training Students and literacy

Teachers and large classes Students and Maths

Teachers and programming Students and practice

Teachers and results Students and remembering

Teachers and subject knowledge Students lack confidence

Teachers and troubleshooting Students not engaged

Teachers are under-ambitious Students not suitable

Teachers' lack of support Students not understanding

Teachers' lack of time Students problem-solving

Teachers recruiting students Students starting too late

Teaching approaches

Resources Choosing resources

Finding quality resources

Lack of resources

Physical computing issues

Technical problems

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

7

2.3 The study: participants

We are discussing here three groups of respondents – 1417 survey respondents as a whole, of whom 1126 were

teachers. We then have a self-selecting sample of 339 teachers who completed the free text questions. From

this sample we identified that 97% (N=329) were members of CAS, as opposed to only 88% (N=1256) of the

1417 people that completed the survey, including those who chose not to answer questions about their practice.

This may be because members of CAS may be more likely to support a piece of research that is presented to

them by CAS itself, or may be that they are a more confident community by virtue of their engagement with

CAS, but we cannot know this.

Of the teachers completing the survey we can see the distribution across the UK in Table 3.

Table 3: Distribution of respondents across UK

UK Whole survey population Self-selecting sample

England 1028 91.3% 314 92.6%

Northern Ireland 7 0.6% 3 0.9%

Scotland 47 4.2% 12 3.5%

Wales 16 1.4% 3 0.9%

Outside UK 28 2.5% 7 2.1%

Total 1126 339

Considering the type of school of our self-selecting sample we can see that the large proportion of teachers

completing the survey were secondary teachers. In total 1126 teachers completed the wider survey of which

75% (N=841) were secondary school teachers, and of the 339 in our self-selecting sample, 77% were secondary

school teachers. Since the time of the survey there has been an increase in the number or primary teachers

joining Computing At School but the figures shown in Table 4 roughly equate to the balance of membership

within CAS at that time. Other categories of school are not as common as primary and secondary schools so

we would expect to see less teachers from those groups. Some teachers teach across the whole age range.

Table 4: Type of school and number of teachers

Type of School Age group

Whole survey

population

Self-selecting

sample

Primary 4--11 229 20% 55 16%

Middle 8--13 16 1% 5 1%

Secondary

11--16 or 11-

-18 841 75% 260 77%

Sixth Form College 16--18 24 2% 12 4%

Further Education 16--19 16 1% 7 2%

 1126 339

Teachers were asked to identify the key stages that they were currently teaching, where the key stages (KS) are

labelled from 1 to 5 according to the ages of the pupils, KS1 being the youngest group at age 5-7 and KS5

being aged 16-18. Table 5 shows the numbers of teachers reporting that they teach the different age groups.

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

8

Table 5: Number of teachers for different key stages (age-groups)

Key Stages KS1 KS2 KS3 KS4 KS5

Ages 5-7 7-11 11-14 14-16 16-18

Teachers from whole survey 152 257 809 798 560

Teachers from self-selected sample 43 74 258 253 194

From Figure 2 we can see that our self-selecting sample have a similar profile to those in the overall population

of the survey respondents, with a slightly higher percentage of teachers teaching post-16 students.

Figure 2: Key stages (age-groups) taught by teachers

We asked the teachers how much teaching they were currently teaching. Note that this survey was undertaken

in the academic year prior to the introduction of the Computing curriculum from age 5 although the previous

subject of ICT has already been dis-applied so teachers were starting to introduce Computing in preparation;

examination subject teachers at KS4 and KS5 were already teaching Computing, and in the case of KS5

teachers had been doing so for many years.

Figure 3: Number of hours of Computing being taught per week

13%

23%

72% 71%

50%

13%

22%

76% 75%

57%

0%

10%

20%

30%

40%

50%

60%

70%

80%

KS1 KS2 KS3 KS4 KS5

Whole survey Self-selected sample

10%

35%

19%

11%

20%

1%

27%

27%

15%

27%

0% 5% 10% 15% 20% 25% 30% 35% 40%

0

1--4

5--9

10--14

15 or more

Curriculum
hours being

taught
(per normal

week)

Self-selecting sample Whole survey

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

9

Here it can be seen that our self-selecting sample differs from the overall respondent population of teachers as

they are teaching more hours per week overall, with 69% teaching at least 5 hours a week of Computing. This

sample includes primary teachers who teach many other subjects as well and would not be likely to teach more

than one or two hours of Computing every week.

Figure 4: Responses to "How confident are you in teaching Computing (on a scale of 0-10)

Teachers were asked to rate their confidence in being able to deliver the new Computing curriculum on a Likert

scale from 0 to 10. This self-selecting group were largely confident in their Computing teaching, with 85%

rating their confidence at 6 or more out of 10. Their confidence overall was greater than the confidence levels

of the wider population completing the larger survey, as can be seen in Figure 4. The general confidence in the

teaching of Computing will have contributed to their willingness to participate in a free text questionnaire on

their practice and also will have a bearing on the content on their responses. This indicates that they may not

be `typical' of the whole teacher population, but represent teachers who are more comfortable teaching

Computing.

3 FINDINGS

The findings of the study will be divided into Challenges and Strategies. In the study we asked questions about

strategies before the “challenges” questions, but present challenges first here as it is then possible to see that

teachers are suggesting strategies that can overcome the challenges faced by themselves or others.

3.1 Challenges

In this section we report on the challenges that teachers report on with respect to the teaching of Computing.

A number of themes emerged from the analysis of the data.

0%

5%

10%

15%

20%

25%

0 1 2 3 4 5 6 7 8 9 10

% of teachers
responding

Whole survey Self-selecting survey

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

10

Figure 5: Challenges mentioned by category

Overall it can be seen that all of the challenges coded fell into the categories that we had broadly identified as

teacher, student and resource-related. Of 940 codings, 43% (N=413) related to challenges directly experienced

by the teacher, 36% (N=341) related to challenges which could be seen to difficulties experienced by the

student, and 15% (N=137) related to resources. In 50 cases, just over 5%, teachers reported to have no problems

with respect to teaching Computing.

Table 6: Challenges: most commonly occurring themes

Challenges Teacher challenges Number of cases

with mentions

Challenges relating to teachers Subject knowledge 97

Differentiation 59

Lack of time 53

Approaches to teaching 52

Dry topics 33

Assessment 25

Lack of support 20

Challenges relating to students Students not understanding 76

Students and problem solving 59

Students' resilience 46

Students not engaged 40

Students ability in Maths 26

Students literacy skills 14

Students not remembering 13

Students not practising 13

Challenges relating to

resources

Technical problems 61

Lack of resources 43

Finding good quality resources 20

Considering these three areas in more detail, Table 6 shows the most commonly coded categories with regards

to the challenges and difficulties described by teachers. The challenges articulated by teachers which could be

categorised as challenges related specifically to teachers, were subject knowledge, differentiation, approaches

to teaching topics, assessment, lack of support and having to teach “dry” topics. Challenges relating

specifically to students included difficulty understanding topics, problem-solving skills, resilience, and

mathematical aptitude and literacy skills. In terms of resources, the problems seemed to be the difficulty finding

resources, although this has got much better in the time that has passed since the survey was carried out, but

also being able to identify what was a good or appropriate resource. Technical difficulties around networks,

installation of software and flexibility of technicians were described as challenges to many teachers.

15%

43%

36%

5%

Resources Teacher Student No problems

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

11

Typical quotes from teachers illustrate these themes.

3.1.1 Challenges for teachers

The analysis of teachers’ qualitative responses indicates that teachers were concerned about the depth and

breadth of their own computing subject knowledge, and in particular that of computer science and

programming. Subject knowledge skills are obviously one of the areas that we are focusing on in England

(Sentance, Dorling and McNicol, 2013) in order to support teachers in feeling confident about their subject

knowledge. Teachers express the worry “…that my own subject knowledge is not always secure”. They also

report that they have spent hours of their own time trying to upskill in the subject:

“...the sheer time involved in learning the language, skills. I do self CPD daily, and

have given easily 100+ hrs of my own time to building my own skill set up ... “

Teachers report that they have attended many training courses to build up their knowledge but still lack

confidence in solving problem that students would come across:

“At the moment it is my own underpinning knowledge about the construction of

solutions to problems I have worked through several training booklets and courses but

it is just the ability to solve problems that the students would come across in the system

that they are using.”

Differentiation is also a concern for teachers. In some cases this is because students have differing experience

of programming:

“The different abilities of students especially when they come in from primary… some

are well-versed in graphical programming environments.”

In other cases, teachers referred to some students progressing faster than others and the gap between their

students widening, making more differentiation necessary:

“The gap between those that engage and achieve very quickly grows at an alarming

rate. When introducing block coding in Scratch to my class, all were unfamiliar with

anything like this, I had some pupils baffled and many self-exploring. I have found the

ability gap to be much bigger than any other subject or topic and it seems to be down to

the way in which the children think.”

“Pupils understand at different pace so trying to keep the high flyers occupied and

engaged without losing the less able pupils...”

Teachers need to find pedagogical approaches that support their students. They express the challenge of

developing, promoting and sustaining problem-solving strategies and techniques amongst the students they

teach. They demonstrate their desire to find ways to help students work through problems rather than give up:

“…finding ways to encourage pupils to logically think through their problems, rather

than ask for assistance at the first sign of difficulty.”

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

12

Teachers expressed concern regarding how they should formatively assessing students and prepare students

for summative assessment tasks:

“I have very little experience of teaching that will prepare pupils for an exam... nearly

everything I have ever taught has been coursework based, so I am not confident my

lessons will arrive in pupils’ memories!”

Some teachers were worried that the mechanisms for assessing progress were not being embedded with

students following instructions to learn programming:

“There is little guidance on assessment and I fear that many schools will just head

down a 'death by scratch' approach with some children simply following instructions”

Other teachers expressed the view that some topics were difficult to teach because they were dry. If the teacher

has recently learned the topic themselves they may not have the background knowledge to bring a topic to life

that a more knowledgeable practitioner would have:

“…some of the theory is quite dry so finding ways to make it interesting to students is a

challenge.”

3.1.2 Challenges related to Students

In many of the responses teachers describe that students lack a basic understanding and can want to progress

to work on projects beyond their ability:

“In addition, many students want to jump before they can crawl and want to be

developing complex programs without any understanding of the steps en route.“

Another variation of this problem is that students cannot apply what they have learned to new problems or

tasks:

“Linking the theoretical concepts to the practical application of those concepts;

students tend to try to learn 'rules' and then cannot apply the theory to their practical

work.”

Some teachers were very specific about exactly what students did not understand, in this case the concept of a

variable:

“Getting across the concept of a variable and why / how variables are used is always a

challenge - simple metaphors help, but this is perhaps the biggest hurdle pupils have.

Bridging the gap from graphical programming (Scratch etc.) to text-based

programming is a challenge …”

Teachers also related the fact that students sometimes struggled with the problem solving:

“Pupils find it very difficult to think computationally. Breaking a large problem in to

smaller 'chunks' is not something which comes easily to them.”

Teachers were unhappy with students’ problem-solving skills when it came to a new problem that they had to

solve independently:

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

13

We also find students’ problem solving skills are under-developed. So we could as a

student to code a FOR loop to iterative for 1000 times. Or to create an IF statement,

etc. They are fine with everything individually. However, ask them to create an

algorithm to solve a problem, which involves everything they have learnt, it can be a

problem.

Although not frequently mentioned, some teachers referred to literacy difficulties as a stumbling block when

learning to code:

“Literacy is a big issue when teaching computing; this has been the main stumbling

block when trying to introduce variables, functions etc. “

Less teachers mentioned students not understanding the theory than the programming, but there were still some

concerns about topics and students' engagement:

“Keeping pupil interest going and maintaining their attention; weaker pupils coping

with mathematical concepts, such as binary; tying the different elements together to

ensure pupils understand how they mesh, e.g. relevance of binary code, logic gates.”

Gender was also highlighted by a few teachers, in terms of engaging more girls in Computing:

“We need to let students know there is more to computing than [company name] and

controlled networking environments, they need to learn to be responsible for their

actions on the computers and understand how their actions can be traced - because one

day that might be the job they are doing. I feel this will get more girls interested and

keep more boys focused and give students a much more realistic view of what

computing is all about. It is a very practical, hands on subject and we need to be

reflecting this in our teaching style.”

Many teachers identified the problems that their students had with having the resilience to keep trying when

something did not work:

“Students giving up easily. Not wanting to check their code. Finding it too difficult and

not being prepared to "find out for themselves". Students are too spoon fed in ICT, and

other subjects, and appear not to have the thinking skills required for this subject. I

have even had quite a few students leave my CS course because they found it hard, and

gave up!”

Teachers talk about the perceived challenge of motivating students who lacked confidence, capability and

competence in mathematical concepts (for example, Boolean Algebra, logical operators) and manipulating

numbers. Also, teachers express the challenge of encouraging students to successfully manipulating different

numbers systems independently (i.e. binary and hexadecimal) which they not have encountered previously:

“Maths abilities of students also appears to have a big influence on their understanding

of logic and sequencing.”

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

14

Analysis of teachers’ qualitative responses highlight the challenges of students reading, analysing and

synthesising problems in order to abstract the essential data to solve a problem. In addition, a number of

teachers express their concern of students being able to read a section of code and detect grammatical, logical

and syntactic errors that exist within that code. Teachers identify the need to encourage students to develop,

embrace and articulate a common computing vocabulary so that students are aware of technical keywords

and use them correctly.

“Literacy is a big issue when teaching computing; this has been the main stumbling

block when trying to introduce variables, functions etc.”

Teachers express the challenges of identifying successful strategies to engage students in the computing

classroom, emphasising an understanding of the ubiquitous nature of computing and the issue of disaffected

and disengaged female students who do not see the relevance of the subject to them.

The analysis of teachers’ qualitative responses highlight the challenge of encouraging students to develop their

mastery of the subject, and in particular coding, outside of lesson times.

“Pupils struggle to remember what has gone before without lots of practice”

Teachers are concerned about how to manage the expectations and aspirations of their students in what they

can practically achieve in creating digital artefacts with the subject knowledge, capability and competence that

students possess.

“Some students are struggling to get used to the change from ICT to Computing - they

are used to doing creative things and now complain: "Miss, this is like a maths

lesson!"”

3.1.3 Challenges relating to resources

The analysis of teachers’ qualitative responses, highlight a variety of resource related challenges which include

possessing adequate hardware and software resources to teach the subject, sufficient funding to purchase

resources for a new subject, and software resources correctly installed, configured and maintained to run

correctly on the platform that the school operates. For example, a teacher comments that there is a “Lack of

resources but CAS is helping to change that”.

Teachers express their frustration of a perceived lack of support and understanding from their managers of

the complexities of teaching computing and unwillingness on the part of technical staff to contemplate

installing software that they consider could comprise the integrity and security of the school’s computer

network.

A number of teachers convey their concerns regarding technical staff reluctance to maintain and troubleshoot

installed software on either the computer network or standalone computers, for example describing “technical

difficulties with getting software to work on the school network” .

Overall, there were some differences between secondary and primary teachers in their responses about

difficulties. More primary teachers (40%) mentioned lack of subject knowledge in computer science being a

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

15

difficulty than secondary (26%). More secondary teachers (17%) mentioned differentiation being problematic

compared to primary (7%). More secondary teachers (10%) said their students lacked resilience than primary

(5%).

3.2 Successful Strategies used by teachers

In this section we address the strategies that teachers report that they use. A set of coding themes was developed

as shown in Table 1, and, of these, Table 7 shows the 20 most commonly occurring themes.

Table 7: Strategies: most commonly coded themes

Strategy Number of
cases coded at

this node

Strategy Number of
cases coded at

this node

Unplugged strategies 70 Peer mentoring 32

Reference to particular software 55 Use of examples 32

Relate to real world activities 49 Algorithms (link to) 29

Use variety of activities 49 Demonstration and modelling 27

Lots of practice/Little and often 47 Learn through examples 27

Use hands-on experiences 45 Contextualisation 25

Break down/decomposition 40 Use of videos 25

Code manipulation 38 Team coding/pair programming 24

Scaffolding 38 Develop troubleshooting skills 23

Emphasise problem solving 32 Collaboration 22

Table 7 shows that teachers emphasised unplugged, hands-on, contextualised activities and the importance of

lots of practice. Approximately the same number of teachers mentioned working on tasks away from the

computer as mentioned a particular software package that they used. The study looks entirely at free text

comments with suggestion within the question; there are themes emerging quite clearly from this data around

using activities away from the computer that promote understanding. These will be discussed in more depth in

the next section.

Most of the individual strategies suggested by teachers could be grouped into a series of five themes, which

are (in no particular order):

 Learning away from the computer (unplugged-style)

 Collaborative working

 Computational thinking

 Contextualisation of learning

 Code tracing and scaffolding.

The way we have moved from coded themes to these five areas of focus can be seen in Table 8.

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

16

Table 8: Coded themes linked to key strategies

General theme Coded theme

Number of

cases

Unplugged/practical activities

Unplugged strategies 70

Hands-on experiences 45

Collaborative work

Team coding/pair programming 24

Peer mentoring 32

Collaboration 22

Computational thinking

Break down/decomposition 40

Problem solving 32

Algorithms 29

Working with code

Scaffolding 38

Code manipulation 38

Contextualisation

Relate to real world activities 49

Using examples 32

Learn through examples 27

Contextualisation 25

Each of these areas of focus will be exemplified in turn.

3.2.1 Unplugged-style or kinaesthetic activities

A significant proportion of teachers mentioned, unprompted, that they try to support students’ understanding

by using physical, or unplugged-style activities in the classroom. One teacher gives two examples of teaching

different topics using physical visual-aids to support the learning:

“For example I use clear plastic drinking cups as memory locations and label them as

variables or when demonstrating an algorithm like bubble sort add data (on pieces of

paper).”

Many of these activities are designed to promote both collaboration and computational thinking skills. In fact,

whether the activity takes place on the computer or not may not be what is interesting. The key link between

the statements made by teachers seemed to be their impression that actually physically being engaged in the

activity was conducive to the students’ learning. This is an area which needs further research to establish.

3.2.2 Collaborative Working

The analysis of teachers’ qualitative responses highlights a variety of collaborative working strategies that they

use within the classroom and would promote to other computer science teachers. These collaborative strategies

included: team work, peer mentor, paired programming and collaboration. These strategies resonate with the

concept of computational participation (Kafai & Burke, 2014) and strategies proposed to develop this within

the classroom. In addition individual teachers commented on the positive motivational impact that

collaborative working has on individuals, small groups and the class itself.

“…Developing digital leaders in students who can support others…”

Teachers spoke about working on problems together and also programming together:

“Decomposing sample problems together as a class then team-coding …they can use

peers for discussion of specific problems. …”

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

17

3.2.3 Computational Thinking

Analysis of teachers’ qualitative responses indicates a number of computational thinking concepts and

processes that teachers want to promote and develop their students’ competence in through using a variety of

teaching and learning activities. These concepts and processes include: logic (algorithmic) thinking,

decomposition, problem solving and abstraction (Brennan & Resnick, 2012; Curzon et al., 2014).

There were many references to breaking down problems in the analysed data, for example:

“Breaking down the problem then breaking it down again then breaking it down

again... …”

In some cases, computational thinking skills such as abstraction were explicitly mentioned by teachers:

“Organise the learning so that the pupils develop their programming skills using

decomposition and abstraction. ….”

3.2.4 Contextualisation of learning

Teachers talk about relating computing content to other aspects of the curriculum; they give examples of both

relating what is being learned in computing to other subjects taught at school and also to concepts from home

(so relating to real-life). The quote below is a typical example:

“Scale it back to basics and use real-life examples for the activities e.g. making tea.

Use lots of visual aids to help pupils and online resources to help scaffold activities.”

It is interesting to examine the range of ways in which teachers talk about the contextualisation of learning.

3.2.5 Code tracing and scaffolding

Closely related to the theme of computational thinking are the strategies that teachers use to help their Students

understand program code. One teacher describes a range of types of strategies used to support students learning

programming, that involve:

“… giving code on paper not electronically, so they have to type it in, think about what

they are typing and fix the errors that occur when trying to compile the program …”

Another teacher describes using trace tables to help students understand the flow of control and changing value

of variables within a program:

“Discussion of what a specific algorithm does, then running trace tables on small

programs …”

Other strategies described included “scaffolding” as the student is given part of a program to extend, and

programs to debug. Typing in code to give more chance that the program would work, but involving debugging

errors caused by transcription errors is another supportive strategy for early programmers reported by teachers.

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

18

4 DISCUSSION

Teachers reported a range of different challenges that they faced when teaching Computing. Some of the

challenges mentioned relate to the teachers’ own difficulties – for example, not being confident in the subject

matter or not being able to differentiate sufficiently for a mixed-ability group, and other comments focus on

the fact that the students have difficulty understanding the material and in problem solving.

Following the work of Finger and Houguet (2007) described above in viewing challenges as intrinsic or

extrinsic helps us to analyse the findings from our teachers. Some of the challenges for teachers are extrinsic

such as lack of resources; others such as their own subject knowledge of understanding of appropriate pedagogy

are intrinsic. We find that also we can also divide the areas of challenge for students as intrinsic or extrinsic to

the students too. Teachers report that students may be challenged by low mathematical ability (intrinsic) for

example, or lack of opportunity to practise (extrinsic). This gives us a framework in which to examine the

challenges that we identified. This can be seen in Table 9 where we show a range of perceived or encountered

challenges reported by teachers.

Table 9: A framework for viewing challenges reported by teachers

 Challenges

 Intrinsic Extrinsic

Teachers

Subject knowledge

Differentiation (skills in)

Approaches to teaching topics

(pedagogy)

Assessment

Resources

Lack of support

Lack of time

Technical problems

Students

Mathematical aptitude

Literacy skills

Resilience

Problem-solving skills

Not understanding

Engagement

Time to practise

School and others’ expectations

Teachers may be working to improve on the challenges that they face that are intrinsic to them, for example

their own subject knowledge and teaching approaches, but be frustrated by the challenges over which they have

less control, such as time in the curriculum or technical support. Teachers report on challenges that we have

defined as intrinsic to the students; in the way that these are presented, they appear to be described as extrinsic

to the teacher. The teachers report the students’ lack of understanding of the subject or lack of engagement as

a problem to them. However the development of strategies by the teacher to overcome the difficulties

experienced by the student may be within their reach as their experience of teaching Computing increases.

It is worth noting that a number of teachers indicated strategies that they had used in an attempt to overcome

the perceived challenge.

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

19

Examining the statements of teachers as they report what strategies work well for them in teaching Computing

has enabled us to draw out particular themes. Ben-Ari (1998) advised teachers: “Don’t run to the computer”,

and it seems that teachers are taking this advice in using a variety of other strategies to get concepts across. In

addition, the use of collaborative work, peer mentoring, pair programming and other strategies is helping

teachers to establish computational thinking skills in young students. What is clear that there is a change for

teachers.

One of the main outcomes of this study is that the ways in which computer science elements of Computing are

taught are different to methods previously used in delivering ICT. Teachers have provided a range of

approaches that they use that are different to those that they previously used delivering ICT in the curriculum.

They also describe that students also have to adapt to new ways of teaching and different types of content,

particularly older students who had been used to the same teachers delivering a different style of lesson.

One teacher described being a teacher in this subject as requiring a whole new style of teaching:

 [It is] “ a whole new style of teaching as for the past 10 years I have been demonstrating skills in

... software, and getting pupils to show evidence they have learnt those skills. With Computing I

actually have to teach, and get difficult concepts across, and need to get out of the habit of simply

showing pupils how to do something and then asking them to do the same thing. I am finding it hard

not to just show how to solve a programming problem, and instead teach pupils to think for

themselves.”

In our particular context, teachers who are delivering Computing are mostly those who have been delivering

ICT1 for many years, which has focused on learning software applications, and on individual work at the

computer producing digital artefacts and evaluating existing products. Clearly the teaching style for teaching

computer science principles is different for teachers. It is also different for students too, and a teacher reports

that “Some students find the change from the old ICT a massive leap” with another reporting that the problem-

solving element had not been present in many ICT lessons:

“Often the subject is viewed as ICT and most students do not know the difference. For

many it comes as a shock that there is a lot of problem solving as opposed to ICT”

Some of the teaching methods suggested by teachers can be identified as constructive activities, based on the

discussion in Section 1. Constructivism, based on students' active participation in problem-solving and critical

thinking, has profoundly influenced the teaching of programming (Ben-Ari, 1998). It implies a need for

authentic and meaningful experiences to support learning based on prior experiences and models of the world.

The following activities, drawn from the suggestions by teachers, would all support a constructivist pedagogy:

 Active learning experiences which involve the student (for example, unplugged, kinesthetic

activities)

 Learning by exploration (open-ended tasks, exploring programming environments)

 Learning by solving problems (self-directed projects, problem-solving)

 Using examples that are relevant to students' own experiences (relating to real-world experiences)

1 Information and Communication Technology

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

20

 Open-ended discussion and working in groups (group tasks, team problem-solving).

Whether the teacher is teaching history, science or computer science, these teaching methods would form part

of a teacher's pedagogical content knowledge. One of the teachers indeed commented on borrowing strategies

from other subject areas:

“I've observed people teaching other subjects e.g. Maths and History and found that

they have great strategies for managing learning content!”

There are some aspects of computer science which may require specific approaches to teaching that do not

necessarily transfer as well from other teaching experiences. Primarily this relates to supporting students with

their computational thinking skills. Some guidance on computational thinking developed for the English

curriculum (Curzon et al, 2014) suggests a range of strategies and activities to develop computational thinking

skills, for example, developing the skill of decomposition by “breaking down artefacts (whether objects,

problems, processes, solutions, systems or abstractions) into constituent parts to make them easier to work

with” and “breaking down a problem into simpler but otherwise identical versions of the same problem that

can be solved in the same way”(Curzon et al, 2014).

It may be useful to give this type of guidance to teachers on how to develop computational thinking skills in

students. There is clearly an overlap between the constructivist influences on pedagogy, which have a long

history, and the more recent emphasis on facilitating computational thinking skills through the teaching of

computer science: in essence the suggestions for actual teaching activities derive from different motivations

but may result in similar or identical activities in the classroom. Types of specific activities that would form

part of specific pedagogical content knowledge to computer science teaching may include:

 Manipulating/comprehending/tracing code (teaches evaluation and generalization)

 Breaking down code/concept (teaches decomposition)

 Developing algorithms (teaches algorithmic thinking, abstraction and evaluation).

Debugging or troubleshooting skills are also important to computer science. To be able to develop these,

students need more than just computational thinking skills. They need patience and particularly resilience,

which is something that many teachers who participated have highlighted was lacking for their students:

“If there is a problem, they want the teacher to correct it for them... they do not have to

get it correct first time, but they do need the skills to be able to correct it and see why

there was a mistake in the first place.”

This is one area of difficulty that was not readily addressed in strategies suggested by teachers. Being able to

“deal with adversity”, “keep trying” or “learn from our mistakes” is obviously a life skill for all of us. However,

this is particularly important when learning computer programming (perhaps less so in other areas of computer

science theory). As all programmers know, learning to troubleshoot errors, and learning from errors, is the

prime way of making progress in the acquisition of programming skills. This is a mindset that is alien to a lot

of children in school, who are taught to seek success, not failure.

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

21

In this study only three of 336 teachers commented that they had strategies to support students in this type of

activity. The three teachers suggested how they personally dealt with students needing to build up their

resilience to failure:

“I encourage pupils to have a go, make mistakes and then try to work out for

themselves what to do when things don't work the way they want”

“Students tend to understand the process better if they work through wrong answers,

rather than being given program code each time”'

“Letting them have a go and allowing them to get it wrong. They need to become

problem solvers, not just the teacher telling them what to write. The students must code

for themselves without too much intervention from the teacher in terms of theory. There

has to be some of course, but after they have tried to figure it out first

5 CONCLUSION

This study has reported on a survey of Computing teachers in 2014 where a large self-selected sample (N=339)

answered free text questions about successful teaching approaches that they used for teaching Computing and

challenges that they faced. We have been able to identify a number of themes emerging from this data and also

pinpoint where challenges may be intrinsic or extrinsic to the teacher. The discussion in this paper can

contribute to work in teacher education to support teachers who are beginning to teach Computing – as more

countries move to introduce the subject in the curriculum.

The teachers participating in the survey are, in the majority, members of CAS and as such have access to a

lively and supportive grass-roots community of teachers with whom they can exchange ideas and classroom

resources. The presence and nature of this community of practice may well have an impact on the commonality

between the approaches teachers are successfully using, as resources are freely shared and adapted and

strategies for teaching discussed in face-to-face sessions such as hub meetings.

The teaching approaches described by teachers in this study are not claimed to be representative of all teachers

teaching the Computing curriculum in England. The participants are self-selecting and have mostly reported

themselves as being confident in their delivery of Computing - thus the data gives us reports of good practice.

We are also not able to provide evidence for which of these suggested approaches is more effective in helping

students to learn without more empirical research; thus another useful angle on this question would be to

examine students’ own perspectives on how Computing is taught. We hope that the strategies suggested here

may help those teachers who are still moving into Computing teaching themselves.

Overall, given that we would like this study to be able to offer guidance to teachers on how develop their

Computing teaching skills, we can suggest that one specific focus should be on supporting students to develop

resilience and the ability to learn from mistakes. Together with other strategies suggested by the teachers whose

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

22

comments are reported here, this may lead to an easier acquisition of programming skills, and subsequently

computational thinking skills.

6 REFERENCES

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged: School Students

doing real computing without computers. New Zealand Journal of Applied Computing and Information

Technology, 13(1)

Ben-Ari, M. (1998). Constructivism in computer science education. Proceedings of the twenty-ninth SIGCSE

technical symposium on Computer science education. Atlanta, Georgia, United States: ACM.

Black, J., Brodie, J., Curzon, P., Myketiak, C., McOwan, P. W., & Meagher, L. R. (2013). Making computing

interesting to school students. Proceedings of the 18th ACM Conference on Innovation and Technology in

Computer Science Education (ITiCSE '13). Canterbury, UK. 255. doi:10.1145/2462476.2466519

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of

computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research

Association, Vancouver, Canada., Vancouver, Canada.

Brown, N., Kölling, M., Crick, T., Jones, S. P., Humphreys, S., & Sentance, S. (2013). Bringing computer

science back into schools: Lessons from the UK. Proceedings of the 44th ACM Technical Symposium on

Computer Science Education (SIGCSE 2013), 269-274.

Brown, N., Sentance, S., Crick, T., & Humphreys, S. (2014). Restart: The resurgence of computer science in

UK schools. ACM Transactions of Computing Education, 14(2)

Bruner, J. (1996). Towards a theory of instruction. Cambridge, MA: Harvard University Press.

Curzon, P., Dorling, M., Ng, T., Selby, C., & Woollard, J. (2014). Developing computational thinking in the

classroom: A framework. Available at:

http://community.computingatschool.org.uk/files/3517/original.pdf).Unpublished report.

Curzon, P., McOwen, P., Cutts, Q., & Bell, T. (2009). Enthusing and inspiring with reusable kinaesthetic

activities. Proceedings of the ITICSE 2009,

Department for Education. (2013). National curriculum for England: Computing programme of study..

London, England: Department for Education.

Dewey, J. (1938). Experiential education. New York: Collier Books.

Diethelm, I., Hubwieser, P., & Klaus, R. (2012). Students, teachers and phenomena: Educational

reconstruction for computer science education. Koli, Finland: ACM.

http://community.computingatschool.org.uk/files/3517/original.pdf

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

23

Ertmer, P. A., & Ottenbreit-Leftwich, A. T. (2010). Teacher Technology Change: How Knowledge,

Confidence, Beliefs, and Culture Intersect. Journal of Research on Technology in Education, 42(3), 255–284.

Finger, G., & Houguet, B. (2009). Insights into the intrinsic and extrinsic challenges for implementing

technology education: case studies of Queensland teachers. International Journal of Technology and Design

Education, 19(3), 309–334.

Grover, S., & Pea, R. (2013). Using a discourse-intensive pedagogy and Android's App Inventor for

introducing computational concepts to middle school students. Proceedings of the 44th SIGCSE technical

symposium on Computer science education. ACM.

Kafai, Y. B., & Burke, Q. (2014). Connected code why children need to learn programming. Cambridge MA:

MIT Press.

Lister, R. (2011). Concrete and other neo-piagetian forms of reasoning in the novice programmer. Proceedings

of the Thirteenth Australasian Computing Education Conference - Volume 114, Perth, Australia. 9-18.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., . . . Thomas, L. (2004). A multi-

national study of reading and tracing skills in novice programmers. Working Group Reports from ITiCSE on

Innovation and Technology in Computer Science Education, Leeds, United Kingdom. 119-150.

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between reading, tracing and writing

skills in introductory programming. Proceedings of the Fourth International Workshop on Computing

Education Research, Sydney, Australia. 101-112. doi:10.1145/1404520.1404531

Mayring, P. (2000). Qualitative content analysis. Forum of Qualitative Social Research, 1(2)

Nishida, T., Kanemune, S., Idosaka, Y., Namiki, M., Bell, T., & Kuno, Y. (2009). A CS unplugged design

pattern. Proceedings of the 40th ACM Technical Symposium on Computer Science Education (SIGCSE '09),

231. doi:10.1145/1508865.1508951

Papert, S. (1991). Constructionism Ablex Publishing.

Piaget, J. (1950). The psychology of intelligence. Cambridge, MA: Harvard University Press.

Sentance, S., Dorling, M., & McNicol, A. (2013). Computer science in secondary schools in the UK: Ways to

empower teachers. In I. Diethelm, & R. Mittermeir (Eds.), Informatics in schools: Sustainable informatics

education for pupils of all ages.Lecture notes in computer science (pp. 15-30) Springer-Verlag.

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. American Educational Review,

15(2)

Thompson, D., & Bell, T. (2013). Adoption of new computer science high school standards by New Zealand

teachers ACM.

Thompson, D., Bell, T., Andreae, P. and Robins, A. (2013). The role of teachers in implementing curriculum

changes. In Proceeding of the 44th ACM technical symposium on Computer science education (SIGCSE '13).

ACM

DRAFT PAPER DO NOT CITE SUBMITTED FOR REVIEW

24

van den Akker, J. (2003). Curriculum Perspectives: An Introduction. In Curriculum Landscapes and Trends

(pp. 1–10). Springer Netherlands.

Van Gorp, M. J., & Grissom, S. (2001). An empirical evaluation of using constructive classroom activities to

teach introductory programming. Computer Science Education, 11(3), 247-260.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33.

i Computing is used as the subject name throughout this paper; it refers mainly to the computer science elements

of the curriculum, and is also known as Informatics in other countries.

