
CPD for Computing Teachers

Laying Firm Foundations
A conceptual approach to programming

Transitioning to Text
Session Notes

The Big Picture
Session Notes to support Transitioning To Text. Session 3 from Laying Firm Foundations: A conceptual approach to programming

CAS Tenderfoot

Background to Laying Firm Foundations

Most pupils arriving in secondary schools will be familiar with the notion of algorithms as a sequence of
steps. They will also have had some exposure to writing simple programs. They will probably have
encountered sequencing instructions, and used repetition and conditional expressions. At Key Stage 3 we
need to emphasise that algorithms work hand in hand with data structures. Pupils will have less exposure to
this idea. To provide both continuity and progression at KS3, practical programming needs to provide
repeated exposure to the same constructs and basic structures (variables and arrays) in a variety of contexts.

Moreover, teachers need to have sound reasons to engage in such activities. It is not enough to teach
programming because the National Curriculum decrees it. We therefore want to consider the bigger picture;
the broader educational value of learning to think like a computer scientist, of which programming provides
one practical expression.

The problems posed and their practical outcomes should reinforce the key constructs they are familiar with
from primary schools but as programs become more complex, so there is a need to emphasise
decomposition as a technique by which complex problems can be broken down into their constituent parts.
Structured programming can then introduce procedural abstraction whereby code sequences can be defined
as named functions and procedures. Once defined, the detail can be hidden; a function or procedure will
perform its task when called by name. Structured programming – developing the idea of top-down design,
decomposition and abstraction – is a key element in equipping children to tackle more complex challenges.

Once familiar with these foundations, the extra demands presented by text based programming can be
addressed. There is a move to introduce text based programming very early (even in primary schools) but
visual languages provide a much lower floor of entry, and can be used to good effect right through
secondary school. Presenting the same constructs in a visual and text based language can help make
conceptual connections.

Learning to program is difficult. There is a heavy cognitive load. This Unit is the first of two with a strong
emphasis on concepts that run, like a golden tread through approaches to all programming challenges. It
urges a staged approach, with each activity having limited goals to minimise potential confusion. It uses ‘toy
environments’ to focus on specific constructs or concepts, whilst providing motivating contexts.

For many ICT teachers, teaching programming will be a new challenge. Even those experienced at teaching
Computing to older students will face new challenges making the ideas accessible to younger pupils. Over
the next few years new subject pedagogy will emerge from this collective experience. A key aim of these
sessions is to encourage discussion around what we are doing and what works best.

Laying Firm Foundations: A Conceptual Approach to Programming is the full Tenderfoot Unit. It comprises
three separate sessions;

 Concepts and Continuity

 Structured Programs

 Transitioning to Text

Session Outline
Session Notes to support Transistioning to Text. Session 3 from Laying Firm Foundations: A conceptual approach to programming

CAS Tenderfoot

Transitioning to Text
This final Session in Laying Firm Foundations analyses the cognitive load involved in stepping up to writing
text-based programs. It suggests a staged approach, starting with writing html; a set of simple mark-up
instructions. The practical challenges here use a tightly restricted environment, RoboMind, which removes
the need for variables and focusses solely on the algorithmic constructs of sequence, selection and
repetition.

The initial activities stress the need to read code and develop the language to articulate it precisely. A
further emphasis is put on ensuring code is laid out correctly. Flowcharts are introduced as an aid to
visualising simple constructs. Using flowcharts the two different loop constructs, counter-controlled and
condition-controlled, are highlighted.

There are four core activities. As the challenges get harder, nested loops are introduced, procedures defined
and links made with earlier block-based work. Only when this is secure are variables re-introduced, this time
as parameters to generalise procedures, so introducing the idea of different variable scope.

The aim of this session
It is important to be explicit about the intended outcomes for attendees. Do not assume they will be aware
of the purpose of your session. Consider too, any prior knowledge they may need for the session to succeed.
By stating the intentions, it helps avoid getting sidetracked into discussing the detail of individual classroom
activities. The primary aim is to educate teachers and illustrate the breadth and depth of Computer Science.
The specific outcomes for teachers from this session, are to

 Apply the key concepts required to write programs

 Recognise the three key constructs in every program

 Become familiar with flowcharts articulating the constructs

 Have considered some challenges posed by text based coding.

The purpose of Tenderfoot is to equip trainers with resources to broaden the outlook of teachers new to
Computing. The intention is to provide a buffet of resources on which teachers can draw, to enrich their
Computing lessons, at the same time as meeting the key aim: providing greater depth of knowledge for
teachers themselves. Developing teachers is the focus, not providing activities for pupils or suggested
schemes of work. It is up to teachers themselves to judge what might be appropriate for their particular
classrooms, and at what age activities might work best.

The session aims to stimulate debate amongst attendees about both subject content and associated
pedagogy. It ends with an encouragement to

 reflect on classroom practice

 consider the potential for engaging in more formal action research and

 achieve accreditation through the BCS Certificate of Computer Science Teaching

As with the previous sessions there are references to the work of Seymour Papert. The slides contain some
animation that require careful explanation. Detailed notes are included with the slides. Before delivering the
session, please check you are comfortable with the narrative and rehearse delivery to familiarise yourself
with transitions.

Transitioning To Text
Activity Notes to support Transitioning to Text. Session 3 from Laying Firm Foundations: A conceptual approach to programming

CAS Tenderfoot

A series of structured exercises using RoboMind freeware – a tightly defined toy environment that helps
bridge the transition to text based languages, whilst reinforcing key concepts.

Preparation required:
RoboMind freeware installed (windows only): goo.gl/oNVpX1
RoboMind map sheet and wooden block for each student.

A Staged Approach

Once students have some grounding in computational concepts we can consider some of the barriers
involved in transitioning to text based programming. A staged approach can help avoid some pitfalls … or at
least help children over the biggest hurdle of all, commonly known as the ‘syntax barrier’. First and
foremost, the biggest barrier for most children is their inability to write / type accurately. An emphasis, right
from the start on accuracy and attention to detail is essential.

Many pupils will have some experience of html. Exercises creating simple web
pages in Notepad or Notepad++ can help instil the importance of accuracy. Pupils
get immediate feedback on their code. It either displays as expected, or it
doesn’t. Moreover, being a mark-up language, there is no extra cognitive load
involving our ‘big 3’ constructs. A simple html document is a set of display
commands, executed sequentially. With such ease of creation, they are an ideal
introduction to the rigour of text based coding.

Introducing RoboMind

Given the extra demands raised by text based programs, finding motivational contexts is
important. Robotics provides one example. The exercises that follow use a simple simulator
and can provide good grounding for developing more complex work with real hardware
later. RoboMind is a commercial product. However, earlier versions, with more limited
functionality are available on a GPL license (goo.gl/oNVpX1), free to download and use. Developed at
Amsterdam University, the simple simulator provides an excellent way to transition to text based
programming, and paves the way to further robotics exploration using industry standard languages.

Robots in the real world provide a good introduction. iRobot produce a range of robotic devices. Their
advertising campaign (2013) for the Roomba vacuum is a fun introductory video (youtu.be/mThf1LjWo1c) to
engage interest. The Amazon Robotics website (goo.gl/S57UxL) features a video about people working there.
Useful for demonstrating the type of careers Computing may lead to.

Robo can move forward, back, left and right. It has the facility to ‘see’, pick things up and paint lines. It
moves from tile to tile in its world, defined by a map. The Remote Control option is a useful way to see how
Robo moves and how the clicks are translated into code. It generates a command for each single step, which
can then be tidied. This simple introduction ensures children can save and open files before writing a
program.

When writing instructions, layout is important. We also consider code efficiency,
using the usual example of a square to introduce repetition. Syntax may be a
new term, so an early focus brings it to the fore. Using a repeat command as an
example, highlight the command and parameter, then the sequence of
instructions within braces that repeat. Notice how we put braces on separate
lines. Insisting on this layout is a key point to emphasise. It makes the code easier
to read and debug.

http://goo.gl/oNVpX1
http://goo.gl/oNVpX1
https://youtu.be/mThf1LjWo1c
https://goo.gl/S57UxL

2

Pass The Beacons

A first exercise in decomposition uses a map and small wooden block to
simulate Robo, (draw on front/back/left/right as reminders). Work out an
algorithm to Pass the Beacons. Start by moving one object out of the way and
jot the commands down. Do similarly for the next object, in a new column. As
they work through the moves awareness of a repeating pattern may emerge.

There are many ‘worlds’ with the default installation. Loading a different map file change Robo’s world. With
the correct map and a solution sketched out try the practical challenge. Be explicit about the purpose of the
exercise; for students to recognise and lay out a loop correctly. Finding repeating patterns is an example of
generalisation or pattern recognition. The extension is challenging but by focusing on spotting repeating
patterns they may manage it! A solution is included.

Establishing The Basics

There are only three constructs for building programs. In the surface that seems
simple but the real power comes once constructs are combined or nested within
each other. Once constructs combine many children struggle to understand, and
even those who do, find it difficult to articulate. Don’t try to run before pupils
can walk. Good programming requires a very solid grasp of basic ideas; endless
exposure to the simple, ‘one level’ constructs. Don’t move on to more complex
challenges unless you are confident this is the case.

Even with working code, asking pupils to explain it will reveal the true thought processes involved. Reading
code snippets aloud, is a good precursor to writing code. Explaining why code doesn’t work reveals the
ability to articulate logical processes. Asking children to read code examples and predict what will happen
gives teachers an immediate measure of understanding.

Much scaffolding is required to introduce compound constructs. Establishing careful ways to lay code out
helps enormously. We can model this by considering how to get Robo to walk, introducing flowcharts as a
way to visualise program flow.

As well as moving and picking up/putting down, Robo can paint lines and ‘see’. Robo can see if the front,
right or left is clear, white, black or contains an obstacle. Pupils can select any command from the Insert
menu, avoiding many syntax errors. Once inserted, editing and indenting helps focus on structure, rather
than syntax. We consider how Robo might walk and avoid obstacles by combining a selection construct with
a ‘see’ command. This requires careful explanation. The presentation builds the code in stages. Insisting on
this sort of detail in layout is the key to clear comprehension.

When using code samples, ask pupils to predict what will happen. Building a mental model of what to expect
is essential for understanding. Reading comes before writing. When the code is run, real learning starts to
happen if the observed behaviour contradicts the prediction. At that point, the student has to reach for their
mental toolkit and reason about what they are observing. Take time to explain the rationale – children are
learning how to learn.

The code shown moves Robo 1 step if the way ahead is clear, otherwise turns
right. Combining constructs is challenging for children, but building complex
structures in this way makes it easier to comprehend. We now need to repeat
the whole ‘one step’ process by putting it inside a loop construct. If students
struggle, a flow chart alongside can help with reading the code, line by line. An
animation is provided; emphasise that the step forward repeats many times until
the way forward is no longer clear.

3

Going Walkabout

Decomposition applies at many levels. Insist on decomposing selection and
iteration structures into separate parts, then further editing to lay brackets out
on separate lines. Finally, use indentation to make the layout as clear as
possible. This is particularly important when developing constructs that are
nested within each other.

Armed with that knowledge the practical challenge is presented to code Robo to go walkabout and paint a
trail as it goes. Once implemented, another problem should become obvious … Robo will continue forever.
Encourage students to study the flowchart; there is no obvious end, or termination.

Extra challenges are posed to stop Robo in the top right corner or on completion of a circuit. These test
understanding of flowcharts. If students struggle, hints and solutions are in the presentation. A good test
might be to explain the impact of moving the conditional. Often answers reveal how little understanding
children gain ‘first time round’. Even with a grasp of the logic behind the program flow, the challenge still
remains to translate that logic into code. The presentation allows the code to be built as a class question and
answer exercise. Slide notes suggest the narrative.

Under The Hood

A repeating theme is the time it takes for children apply basic constructs in programs but some ‘get it’
quickly. Having ‘low maintenance’ challenges on hand for these students is an essential part of
differentiation. Investigating Robo’s maps is itself a good exercise in computational thinking. Load a map file
and it displays a new world. But how does it do it?

We can get ‘under the hood’ by opening it in Notepad, showing a description in
another language. Let able students study it without prompts. Systematic
investigation is needed to identify all the elements involved. In particular, the
syntax involving for adding paint strokes requires understanding how the x and y
co-ordinates are specified (numbered from zero from top left). The map shown is
included in RoboMind: FindSpot1. As a challenge, students could study the maps
and create two new variations as shown.

Finding The Spot

Challenge students to flowchart the sequence to find and move onto the spot.
We want something similar to the walkabout code, using selection and iteration.
That way we can generalise the code. Robo should find the spot, regardless of
which map (findSpot1 or findSpot2) is used. The presentation builds up the
flowchart, allowing the teacher to talk through the sequence of events.

Loops are also considered in more detail. Up to now, loops have been counter controlled, that is ‘For’ loops,
or ‘Forever’ loops (in the absence of a number). This time we use a ‘While’ loop; repeating whilst a condition
remains true. Emphasise the two types with a little chant for the class. ‘There are 2 kinds of loop – what are
they?’ ‘Counter controlled and condition controlled’ comes back the reply … but it can still be a source of
confusion. Students may have used a ‘Repeat – Until’, or ‘Forever – If’ in Wacky Races, and it is worth
highlighting these. Neither uses ‘while’ but both use a condition to control the program flow.

Students can now program a solution and once they succeed, consider further generalising so it works on
findSpot3. A further test could use findSpot4 (requiring no modification) and findSpot5 which considers a
different starting position. This is quite tricky and should provoke a lot of thought and discussion. The
obvious solution would take Robo forward to a wall, at which point it turns right, invoking the wall following
routine. Looking at findSpot6, should illuminate an obvious problem with wall following.

4

Big Challenges

Two advanced challenges are provided, firstly a maze. If the maze is simply
connected (i.e. has no loops or inaccessible areas) a wall following algorithm can
provide the basis for solving the maze. This is a ‘classic’ challenge and can leave a
lasting impression. Unfortunately, too often, it is introduced without the
necessary scaffolding. With the grounding we just introduced, it shouldn’t present
too much of a step change. The good folk at RoboMind have produced a nice
handout about Maze Solving which could encourage further research into maze
solving algorithms (and types of mazes). For more able students, implementing
Tremaux’s Algorithm would be a good challenge.

Amazon acquired Kiva Systems in 2015. They produce robots used in automated
warehouses. The Business Week video (3.30 mins) is well worth watching
(youtu.be/6KRjuuEVEZs) to give a sense of how robots are used in the ‘real world’. They also look rather like
the Robo! Ask pupils how the robots find their way around the warehouse. The complex software is
obviously important, but the physical steering is accomplished by ‘line following’. You can see the tracks on
the warehouse floor. RoboMind have produced a very good handout about Line Following. This includes a
series of increasingly difficult challenges, from a simple line follower, to considering avoiding debris and
walking grids. To tackle the later challenges you need to introduce procedures, like those in BYOB.

Introducing Procedures

A brief introduction, using our earlier square example follows. In drawing simple shapes we are taking
directly from the ideas of Seymour Papert and exploratory Logo activities advocated in Mindstorms. Drawing
patterns and shapes is a rich environment for early programming. The visual output means immediately
seeing if a program works. It is not just the medium that is important, but the pedagogy too. You can get a
flavour of this from the wonderful archive footage in the presentation.

Asking how Robo might create a window with 4 quadrants should provoke
discussion. If not encourage decomposition, subdividing the problem. As Papert
notes though, students learn best through doing. Encourage students to try,
before discussing the solution. This is a repeat of a square. Using the example
point out the potential for confusion unless ‘nested loops’ are indented. To
reiterate - laying code out well is important for debugging.

It is best to avoid the complexity of nested loops in early programming. However encapsulating nested code
in procedures makes it much easier to comprehend, since we can abstract away the unnecessary detail – in
this case, by creating a procedure to draw a square, to remove the detail of the inner loop. We can make a
link with previous work in BYOB, which helps understanding. In BYOB, we encapsulated code to draw a
square in a named block. We want to do the same thing in Robo’s code. As with BYOB, there are two stages,
procedure definition, and (once defined) procedure calls. To define code we use Insert to avoid syntax
errors, but as before, we want to lay the code out on separate lines to make the structure more obvious (as
shown). To call the procedure we simply insert the procedure name in our code, just like in BYOB.

The procedure defined draws a fixed size square, but we can generalize so it can
be called with different values. All squares use the same commands. What differs
is the length of the side. The more general procedure definition has a parameter
included in the procedure header, referenced in the body. We can now call the
procedure with different values as the parameter. We can think of parameters as
variables local to a procedure, like a box, named in the definition, into which we
can put different values, when we call the procedure.

https://youtu.be/6KRjuuEVEZs

