Going Gooey CAS

Teacher Notes to support Tenderfoot Unit 1: How Computers Do Stuff — A conceptual approach to programming (part 2)

Further introduction to Small Basic introducing the development of a graphical user interface.

Preparation required:

Small Basic available on all computers, all sample programs available in a shared repository.
Graphic Shuffle Investigation sheet per person.

Optional: Investigating A Perfect Shuffle sheet and cards per person.

A Graphical User Interface

The final coding challenge returns to our shuffling theme and introduces a GUI (pronounced gooey). Learning
the particulars of any language carries a significant overhead. There is scope for debate about whether a
school should focus on 1 language or provide exposure to many.

The purpose of these materials is to suggest possible
environments, but inevitably we can’t, and shouldn’t provide a
crash course in any. Once pupils gain some familiarity with Small
Basic you can encourage them to investigate the Microsoft
Small Basic curriculum. This is a series of 1 hour lessons
introducing different features. Free to download from
g00.gl/BcVI5T they are very useful for introducing specific
functionality, such as the graphics window (lesson 2.1). To give a
sense of how powerful Small Basic is, we'll take our shuffle
routine and produce a graphical user interface (GUI) for the
program.

It is easier to start with reference to an existing program. Studying and
amending code is another effective learning technique and allows us to miz::i::::nzn:g:r:;:;:;teus:p
focus on the structure of the code. The code for this is provided it e e
GraphicShuffle.sb. The challenges also need the card images included in

the program resources. The investigation can be delivered as a taught
activity or independently. An activity sheet is included to support the
latter.

The slides allow the code to be introduced. Creating a graphics window is E,,,_M_Mm.,d.,'fi:".:':i““"‘”[;‘“";""'“""'”“'"“'
straightforward. Note the use of the FilePath variable, which allows the

code to create a string pointing to a subdirectory of card images e e a—
(included in the resources). Line 43 demonstrates how the FilePath e e —

.
itis activated, a button dick will Taise sn event’ causing the Click subroutine to be called.

variable is concatenated with the filename of the card back image.

Explain how the Click subroutine works.

Make sure you are clear how the 52 card backs are displayed in a row.
Can you find the code to display the other graphical elements? It is in the
Clear subroutine, so the canvas is redrawn each time that is called.

Currently the code doesn’t work. Notice the buttons added at the end of Clear. They are examples of control
objects. These allow a GUI to be controlled via button clicks and other common features. Ours don’t work
because the relevant code on Line 27 is commented out. When it is activated, a button click will ‘raise an
event’ causing the Click subroutine to be called.

It is worth emphasising how this type of program leads towards a different programming ‘paradigm’. Event
driven programs sit in a main loop, displaying a set of objects waiting for an event to be raised. Code
routines are then attached to the event handlers. Thinking of problems in this way can lead to a very
different way of developing software. For now though, once working, a series of challenges are posed.

COMPUTING AT SCHOOL

EDUCATE - ENGAGE - ENCOURAGE

Part of BCS, The Chartered Institute for IT

CAS Tenderfoot


http://goo.gl/BcVI5T

Challenge 1 asks to refactor the code, so it displays the original Deck in order. Once the buttons are
activated we are able to display the cards in shuffled order but not their initial state. This is a simple task that
involves recognising that Shuffle is called in the main program, not just on a button click. Commenting this
out, or removing it will solve the problem.

Challenge 2 encourages further study of the code, by tidying up the shuffle subroutine. It currently
implements a Knuth shuffle. This should be replaced with their own shuffle algorithm, developed earlier.
There is no swap subroutine here, so they will have to include that as well, if they used one. The shuffle
subroutine also includes the code to display the cards face down. This has nothing to do with shuffling. It is a
common mistake and needs emphasising. Subroutines should be developed for separate tasks, so should be
factored out into its own subroutine.

Challenge 3 asks to sort the Deck back into order? Implementing any sorting algorithm is well beyond most
KS3 pupils, but it is included as a challenge for teachers or able students. Encapsulate this in a subroutine
CardSort. A simpler way to produce the cards in order is by recreating the array. Simple refactoring, calling
Manylntegers will achieve this. Whichever approach is adopted, the real challenge is then to work out how
to create and display a fourth button which calls CardSort when it is clicked.

Challenge 4 is difficult. We represent a deck of cards by the numbers 1 to 52. Write the code to allow the
input of a CardNumber. The program, should print the description of the card e.g. “King of Hearts”.
Encapsulate this in a subroutine CardName. Incorporating this in the GUI could be an extra extension for
very able students. A slide provides a hint and teaching aid. The numbers of the card image files are listed; 1
to 13 represent Hearts, 14-26 Diamonds and so on. So cards 1, 14, 27 and 40 are all two’s of a particular suit.
Using floor division and remainders, think of a way of extracting the suit and value from the number.

As previously mentioned, the Small Basic Introductory Guide is very
good. Chapter 10 focuses on arrays. The later examples introduce a
- two dimensional array to represent a grid in a graphics window.
Finally, it uses a counter controlled loop to introduce some very
effective animation. As a homework for teachers it is well worth
working through and could provide the basis for several coding
challenges. How about creating a chess board, for example?

A Perfect Riffle Shuffle

Riffle shuffles interleave the top and bottom halves of a deck. A final
activity is designed to reveal a surprising insight. It is also used in the
introduction to Tenderfoot Unit 2: Clever Stuff For Common Problems, so
use here is optional, if time allows. It is best tackled as a hands on activity
using 8 cards and the investigation template. An explanation is required of
an out-shuffle, which leaves the top and bottom cards in place. Using 8 cards, starting with them in order,
perform 3 out-shuffles. What do you notice? The cards return to their original positions.

Investigating The Properties Of A Perfect Riffle Shuffle

6] 121 31 (a1 [s1 [6] 7 [8]

An in-shuffle, interleaves the cards but moves the top and bottom cards ‘in’. Starting with the cards in order,
try 3 consecutive in-shuffles. The order hasn’t returned after 3 shuffles (it has reversed), so encourage
further investigation. It should take another 3 in-shuffles to reinstate the original order.

A final challenge might be to develop each in and out-shuffle as a separate subroutine. The GUI Shuffle
application could be refactored to accommodate them and a series of investigations embarked on. How
many consecutive in or out shuffles are now needed to return the deck to its original state? As well as
returning to the original order, experiments could be undertaken to see how to control the position of the
top card. What sequence of moves would be required to move it down the pack to the 2", 37, 4t or any
other position? Such perfect shuffles lie at the heart of some magician’s routines for manipulating cards. This
is an activity we will return to in Tenderfoot Unit2.



