
Computational Graphics
Teacher Notes to support Tenderfoot Unit 4: Bits And Bytes – The digital advantage

CAS Tenderfoot

A major practical activity exploring graphic manipulation with Python. The exercises give a concise
introduction to the principles, using JES; a purpose built environment developed by Mark Guzdial.

Preparation required:
JES installed on all computers and sample files available.
These teacher notes available for all participants.

JES: A Python Interpreter

This practical exploration uses a Python environment developed by Mark Guzdial, who we met earlier
through his Pixel Spreadsheet utility. One of the great things about the JES interpreter is that it allows you to
define procedures that produce great visual effects. Being able to see a visual outcome is a well-known way
of assisting in the debugging process. Don’t worry of your efforts don’t work first time. Persevere. Most of
the exercises below don’t require very complex coding, and you’ll soon get used to the syntax. That said, if
you are new to coding, these may prove challenging! JES v4 is included in the resources, but can be
downloaded from goo.gl/GtNW1r. This is the teacher’s page for Mark Guzdial’s Media Computation course,
pioneered at Georgia Tech, and includes links to other supporting material. More details about the specific
operations demonstrated can be found in the slide notes. Read carefully before using the presentation.

Once launched, the basic operations for selecting an image file
and extracting the raw data is always the same (left). The picture
tool allows you to interrogate the picture. This can be useful
should you wish to select, for example, a range of pixels in your
code. You can establish the range using the picture tool.

Perhaps the most important operation is to extract a list of pixel
objects. Most operations will then work on manipulating this list.

You can access each pixel by its position in the list (left), or
iterate over a range of pixels (shown in the procedure below).

The best way to code effects is to create procedures which you can
save and later modify. If you want to use a procedure in the
interpreter, open it in the editor, then Load it into the interpreter.
Here we have a procedure called decreaseRed(picture) defined (def)
in the Editor. Once it is loaded into the program in the program
window we can call the procedure just by using its name. The
explore(picture) command will display the picture, but not give you
the same interrogation tools that openPictureTool(picture) does.

http://goo.gl/GtNW1r

2

This example is worth studying for basic syntax. In the interpreter:

A file is selected

A ‘picture’ variable is assigned the values of the file.

The image is viewed with the explore(picture) tool

The procedure ’negative’ is called. For this to work the procedure
must have been defined (in the editor above) and loaded into the
interpreter below. The procedure iterates through each pixel, gets
the R, G and B values. It calculates another value (negColour) and
assigns this to the pixel colour.

Once complete, the new image is viewed with the explore tool.

Emphasising The Concepts

With any new coding environment there is an inevitable overhead mastering the syntax and other
particularities of the interface. The presentation talks through several simple procedure definitions but tries
to root the detail in the broader concepts.

Some time is taken to ensure familiarity
with a pixel object and its 5 attributes: x and
y positions and the Red, Green and Blue
colour channel values.

Once that is clear the getPixels(picture)
function is visualised as returning a large
array or list of pixel objects. Each pixel is
identified by its list index position.

Most image manipulation involves opening a picture, extracting the pixel data into an array, then iterating
over that array making changes as required. As such, it is an ideal medium for reinforcing simple algorithms,
acting on the sort of linear structures children should already have some experience of by the end of KS3.

Most of the exercises that follow help reinforce the ‘big 3’ constructs
that lie at the heart of all algorithms. Even when the focus is on the
particulars of syntax, always take time to draw back and emphasise
the bigger picture. Note here, how we refer to repetition as iteration.
In many of our examples we will be using loops (repetition) to iterate
over a long list.

We use the decreaseRed() procedure to reinforce key concepts as
students read the code. Can they decompose the procedure and
explain precisely how it works? Once defined, we can abstract away
the detail of how the procedure works. Simply calling it by name
makes the main sequence of code easier to understand.

We can generalise the procedures too. By introducing a parameter,
we can call the same routine with different values, varying its
intensity. Once we have a procedure for changing one colour, we can
also duplicate and modify it in the Program Editor. This way we
quickly produce 3 procedure definitions in the same program. Once
it is loaded, we can call any of the three procedures it contains.

3

Our example also demonstrates how we can combine procedures to make more complex ones. It defines a
makeSunset() procedure by combining calls to decreaseBlue() and
decreaseGreen(). It deliberately omits a key element. What is
missing in the definition? makeSunset needs to have an
amountInPercent parameter to pass to the calls of decreaseBlue()
and decreaseGreen().

Take time to ensure these basics are understood. They are the key to
further progress. There is no requirement to code all the subsequent
examples. So long as everyone understands the principles, and each
of the following algorithms is explained and discussed, they can be
implemented at a later stage.

Armed with this basic knowledge we can turn our attention to some cool algorithms. These increase in
difficulty. They are provided as exemplars to aid teachers understanding. Although they are referenced in
the presentation, these are notes for the activities. Try them before delivering the presentation!

Building Cool Algorithms

Posterizing An Image
Posterizing an image involves reducing the number of colours that make up the image. We want to cycle
through the R, G & B values of each pixel. For each value, we need to see what range it is in, and set a new
value accordingly. The pseudocode is given below.

Knowing what we do about the Python syntax, you
ought to be able to define a procedure to do this. We
suggest you have a go yourself, but if you are
struggling, a part solution is shown on the right. Can
you see what else needs doing? Cover it if you want to
try yourself!

loop through the pixels:
 get the RGB values
 map values to smaller range
 if < 64 set to 31
 if > 63 and < 128 set to 95
 if > 127 and < 192 set to 159
 if > 191 and < 256 make 223

4

Grey Posterization
Once this is working, you should be able to create a
black and white posterized image. In this case, we will
want to calculate the luminance of a pixel. A simple
measure of luminance would be to take the average the
Red, Green and Blue values. If the luminance is less than
a certain threshold, we could set the colour of the pixel
to black, otherwise we could set it to white. Once
working you could play about with the threshold and
see the effect of changing it. Again, you’ll learn most by
doing it yourself, but if you want a solution look below.

Antique
Photos
It’s very easy to put a colour filter on to an image. We’ve already
looked at how to decrease a colour channel, so here’s a chance to

prove you can define a
procedure from scratch
(if you didn’t before).
Applying a sepia effect,
like that on the right is
very simple. The algorithm is given on the left. The rest is up to
you.

Applying a Blur to a Picture
You’ll want to select a simple picture with crisp lines for this.
Blurring a picture involves an algorithm rather like that used
to create a digital image—a demosaicing algorithm.
Essentially, for each pixel, a new value is calculated by taking
the R, G & B values and averaging
them with the same values from
the 4 adjoining pixels. This may
seem complicated, so let’s
decompose the task. First
establish you can get the R, G and

B values of the pixel. Then think about the relative x and y co-ordinates of the
adjoining pixels. Try to get the same values from the one to the immediate left. If

5

you can do that, a bit more copying, pasting and altering of the relative co-ordinates will get the rest. The
final step is to figure out a way to add them up, divide by 5 and set the new value to the correct colour
channel.

Creating An Outline
This is an interesting concept. Children always draw objects with thick outlines, but real world objects rarely
have an outline. They do this because we perceive an
outline where there is a sharp contrast between
colours. We can harness this idea to convert a picture
into an outline drawing. Warning! You may have mixed
success with this, so experiment with values to find the
optimum. The algorithm is simple, and builds on the
understanding of sampling adjacent pixel values.

However, there are a new challenges here. Firstly
we are creating a new image rather than altering
an existing one. Secondly, we need to copy pixel
values from one image to another at the right x.y
co-ordinates. Thirdly, we need to consider how we
will compute the luminance of a pixel so we can
compare it with those to the bottom and right and
determine whether it is an edge. We already have
a way of computing luminance so if we define a
procedure to do this for any pixel we can call it to
calculate the values for 3 variables representing 3
pixels; here, right and down.

A second ‘helper’ function can then be defined to
determine whether the comparison yields an edge. By
separating these two helper functions out, you make
the main loop of traversing and writing pixels much
easier to manage. The two functions are shown right.

To create a second image file to write the new values
to, we can simply open the source image file and use
makePicture(filename) to create two data files, source
and destination perhaps.

For every pixel interrogated in the source, we will set
the corresponding pixel in the destination to black or
white, depending on whether a line is detected.

So the start of the main lineDetect() procedure will look
something like this. We’ve left the real challenge of
iterating through the pixels to you to solve, with a few
comments as hints to the approach.

This is not an easy challenge, but is included for those who already have some programming experience and
familiarity with Python. If you are new to this, please don’t be put off!

6

Merging Pictures
Once you are familiar with copying pixels
from one file to another we can begin to
understand how pictures can be merged.

The image shown copies pixels from one
file to a blank white canvas. For the last
third of each row of pixels, only half their
values are copied. A second picture is
also copied but offset by 2/3 of the
width of the first picture. Again, only half
the values are copied for the same
number of pixels as halved in the first.

With a bit more thought, we could have
created the new picture without the
mismatch of sizes shown. Further
thought to a gradual reduction in values
copied would have created a proper
blend effect.

Taking The Ideas Further
We’re just scratching the surface of image manipulation here. If the idea is
interesting we suggest you look at Mark Guzdial’s work on multimedia computation.
The ideas (and some images) here are taken from him. He doesn’t restrict himself to
images but has tools for manipulating sounds and movies too. Realising that sound
and pictures can both be represented as numbers opens up many interesting ideas.
You could try, for example, listening to a picture, or seeing a sound. Take a look at
Mark speaking at TEDx: goo.gl/4QsS9T. If you’re inspired his book is well worth the
investment.

http://goo.gl/4QsS9T

