Investigating Regular Expressions CAS

Teacher Notes to support Tenderfoot Unit 5: Theoretical Computers — Fun with finite-state machines

A practical activity to develop familiarity with finite-state automata (FSA) and a fun classroom
demonstration. They encourage students to design their own notations for regular languages, and provide
motivation for learning precise notation.

Preparation required:
Reverse Pictionary sheets for students.
A variety of props for Mr McDuff’s breakfast.

Reverse Pictionary

This exercise, developed by Linda Pettigrew, comes from the CS Field Guide produced in New Zealand. Split
the class in half and ask them to pair up. Give each pair in one half a copy of the FSM-A1 diagram, and those
in the other half a copy FSM-B1. Give each pair a Language Sheet as well. They will be writing in the top half
only. Each half should not see the FSM the other half have been given.

Give the pairs five minutes to come up with a description of the words their FSM will accept. Encourage them
to think about ways to describe repeating sequences. They may be familiar with some symbols used in

regular expressions, such as *, but they can use anything they 4 ‘
decide. But they also need to list the meaning of any symbols h/E‘)LO\p koio\k
they use so others can interpret them. -O———0 =8 =
. 109 . e :'i oi it

You may need to help get the students started. For example, since “ g._‘_) oo w H
* represents zero or more instances of a character, perhaps we ‘e e o e e,

p). a0 »” " “ ‘ .'
should have a symbol to mean ‘one or more’ instances (a + Q@ A Ay ¥Er SR ;i
perhaps). We could then write he+p. The whole phrase itselfcan | ~ W W=
be repeated, with a hyphen, so how might we represent the a S o
repetition of a string rather than a character, and so on. When /
they are happy with their description and definiw 4/‘

completes the Language Description box.

Pairs then swap the language description with a pair in the other

half. it

The receiving pair now complete the bottom half of the sheet. _/
Having read the description they enter six strings they think would

be accepted, and six they think would be rejected.

Finally, the sheets are gathered in and redistributed back to the P ‘
original half. They do not have to return to the original pair. Each \X\M% M
pair now acts as a ‘computer’ taking each input string provided at %W ~

the bottom and confirming it conforms to the FSM. If a string is _
accepted / rejected incorrectly, the pair have to work out where the ﬁ —1:‘:/-\’;5/ J““"V”_:m

error arose. g V:—
Sl == o

Once familiar with the activity, a second set of FSM can be shared
and the activity repeated.

Follow up discussion can investigate whether some descriptions were longer than needed, or confusing, and
whether the language of the FSM was captured in the description. This provides a constructivist approach to
introducing the notation of regular expressions whilst emphasising the point that any language expressed by
a FSM can be represented as a regular expression.

COMPUTING AT SCHOOL

EDUCATE - ENGAGE - ENCOURAGE

Part of BCS, The Chartered Institute for IT

CAS Tenderfoot

Mister McDuff’s Breakfast

An idea from the MegaMath project, Mr McDuff’s Breakfast
is a child friendly activity to introduce regex notation. This
can be acted out to a class. Mr McDuff likes his breakfast. His
choices are summarised in the items listed. Mr McDuff likes
variety. Students should try to summarise the rules of his

eating habits.

Make several breakfasts in front of the class until someone
can explain that Mr McDuff always has a bowl of oatmeal

and a piece of toast.

Regular Expressions

Mr McDuff’s breakfast:
om | r|s)*t(p | j)

0 = a bowl of oatmeal
m = a splash of milk

r = a handful of raisins
s = a spoonful of sugar
t = a piece of toast

p = peanut butter
j=jam

He sometimes has milk or raisins or sugar on his oatmeal. He may have it plain. If he has sugar, he may have
several spoons, similarly with handfuls of raisins or splashes of milk. His toast will always have either jam or
peanut butter. We can summarise all his breakfasts in the regular expression. Note the ‘pipe’ symbol (|) here

signifies OR, not the distinction between input and output, as in a finite-state machine.

Three key symbols to emphasise:
e *represents zero or more of the preceding element
e | represents alternatives (or)

e () enclose multiple items to which a symbol applies

They should include anything they drink as well as eat.

Taking It Further

CS4Fn has a very good article aimed at secondary aged students. It introduces
regular expressions by looking at knitting patterns. You can find the article via this

link: goo.gl/h3lzvF. It introduces all the key notation for writing regular

expressions. A good supporting homework.

I —

Armed with this knowledge, can the children come up with a regular expression for their own breakfast?

Regular Expressions: Further Investigations

RESOLFCS 1D SUPPON TRNDGNDOL LN S: THeOeal COmpulins.

Suggestions for teachers

o finite

, and both are bound up with formal
t0a reguior expression that shows exactly what it

Regular y
languages. Every finite
does (and doesn't) match. Regular expressions are usually sasier for humans to read. For machines, a

computer program can canvert any regular expression to an FSA, and then the computer can follow very

simple rules to check the input.
Regular expressions are a simple way to search for things in an input, or 1o specify what kind of inout will be
accepted at legitimate. For example, many web seripting programs use them to check input for patterns like
dates, emad add and URLs. ions Bke beve: them and
they're built into most programming languages. Whilst all are based on some foundation symbols, they
differ in same particular symbol options they offer. For this reason, at this level it is probably best to select
one context for extreises to minimise any patential confusion for students. By the same token, it i probably
best to develop exercises that focus on the basic, widely sed

and ward

The simplest kind of exercise is searching for matching text. This has particular
practical value for students, who should be getting to grips with basic editing tools
and techniques. =

4 which i g pesist seel

Microsoft Ward has a Find
introduce children to the utility of the Find / Replace feature. When selected, if you

[fclac

e in the

falienge to
tewr?
Ut phone
riding

enable the “Use Wildcards® option, it can implement regular expressions. Graham
Mayor provides instructions for using wildeards at goo,gl/I4 o0, The basic symbols |-
used are commen to mast regular expression editors. The article conchudes with

same excellent practical exercites, such 3 reversing forename and sumames in
d formatting text such i

list, transpasing dates, and findi
regular expression editor for the Ruby

language. The symbel set it uses is cammen
o many high leve! programming languages. You can access
2 simple test matching easrcise using this link:
goo.gl/Thiihe A new window to the Rubular system will
open as shown. I you enter “cat”, it should find & matches
in the test strings. Now try typing a dot {full stop) as the
fourth character: “cat™. In a regular expression, *.~ can
match any single character.

Try adding more dots before and after “cat”. How about “cats” or “cat.n"?
Now try searching for “ic.". The =% matches any letter, but if you really wanted s full stop, you need to write
it like this i), The backslash ‘escapes’ the dot from being a regex symbol, and treats it 23 a character 1o
mastch. You can use this search to find “ic” at the end of a sentence.

Another special symbal i *\d”, which matches any digit. Try matching 2, 3 or 4 digits in a row (for example,

twa digits in a row B “\d\d").
inthe squ ill match.

try “[uaff".
match “fat”, “sat” and “mat”, but not “cat”.

Ta asmallset
Try writing a regular expression that will
A suitable expression is [fsmat

Asharteut for “lmnopars]” is “[m-s]" try “[m-shat” and TT4-6]".

[SeleE]
Source: CS Field Guide, New Zealand
esfieldguide.org.nz

COMPUTING AT SCHOOL

RegexOne (regexone.com) is a good website for teachers
to learn the basics of writing Regular Expressions. It's a
little dry, and not recommended for children. However,
students would benefit from some experience of writing
regular expressions. In themselves they are good pattern
matching exercises, an essential element in
computational thinking. But practical exercises can also
illustrate the sort of ‘real world’ tasks in which Regular
Expressions (and Finite State Machines) might be used.

Regular Expressions: Further Investigations is a
supplementary document which provides further
suggestions and detailed exercises teachers can use in
class.

These start with practical exercises using the Find feature in
Word to setting your own exercises using Rubular, one of
many regex checking utilities.

Whether or not these are used with students, teachers
unfamiliar with this area would benefit from working

through the suggestions.

http://goo.gl/h3lzvF
http://regexone.com/

