
Logical Foundations  
Teacher Notes to support Tenderfoot Unit 6: Bits AND Chips – Boolean logic and machine architecture   

 

 

CAS Tenderfoot 

A taught session establishing ways to represent the behaviour of the three logical constructs of AND, OR and 
NOT. Introduces truth tables, combinational logic and symbolic representation of circuits. Further gates are 
introduced (NAND, NOR and XOR) with their algebraic representation before demonstrating that all logical 
constructs can be reduced to combinations of AND, OR & NOT. Practical activities to introduce the ideas are 
highlighted throughout.   

Preparation required:  
Optional sets of batteries / bulbs etc. (common in science departments). Combinational logic exercise. 
5 dice and Dotsy scorecards per pair. 
Human logic circuit resources plus sticky tape per group (7-9 children)   
 

Concepts and Computational Thinking  

Collectively the concepts we identify as key to Computational Thinking can all be thought of as part of the 
skills of logical analysis and reasoning, so what better place to start than by looking at the foundations of 
logic. Our starting point is a mathematician, George Boole, who was born just over 200 years ago. In 1854 he 
published a very influential book “An Investigation Into the Laws of Thought” which continued “on which are 
founded the mathematical theories of logic and probability”. In it, Boole wrote: “... no general method for 
the solution of questions … can be established which does not explicitly recognise ... those universal laws of 
thought which are the basis of all reasoning ...” 

The book demonstrated the power of a few simple logical operations. Their application to computing 
became apparent through the work of Claude Shannon nearly a hundred years later. In 1938 his Masters 
thesis from MIT formed the basis for “A Symbolic Analysis of Relay and Switching Circuits”. In it, he 
demonstrated that you could construct electrical circuits to represent Boole’s logical operations. 

Boole’s logical constructs can be represented in the behaviour of logic gates. A logic gates has one or more 
inputs, and one output. They can be made out of anything, but in the first class activity, we use basic 
electrical components, batteries, bulbs and switches, which are common in school science labs. This makes a 
good group activity, with pupils working in pairs initially (if equipment makes that possible), then combining 
as the larger circuits require groups to share equipment. 

Consider a simple electrical circuit. The battery is connected to a switch, which connects to a bulb. The bulb 
connects back to the battery to form a circuit. The behaviour of the bulb is controlled by the switch. We can 
say when the input (switch) is 0 (off), the output (bulb) is 0 (off), and vice versa. Expressing the behaviour in 
this fashion, is known as a truth table. The slides that follow provide a narrative to introduce this. 

Through these simple activities, constructing circuits, we hope the 
children will discover behaviour that equates to that of logic gates. 
Start by connecting two switches ‘in series’, i.e. daisy chained 
together. Traditionally we refer to the output as Q. We need to 
calculate the output for every combination of the switches, labelled A 
and B. Always complete all combinations of inputs first. To ensure 
students don’t miss any, fill the input columns as if you were counting 
in binary. If students don’t make that connection, point the pattern 
out. Once created, students can complete the output column (Q).  

Ask them to explain, in their own words what the truth table shows. We are looking for answers that 
articulate that both Switch A AND Switch B need to be on before the bulb lights.  
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Pupils should now rearrange their circuits, so the switches are 
connected ‘in parallel’. Ask the pupils to develop a new truth table. 
Point out that it still has two input switches, so the same 
combinations in the truth table need to be tested, but the output will 
be different. This time when A OR B OR both are on the bulb lights. 

It is unlikely pupils will be able 
to create this arrangement, but 
they can imagine the scenario. 

Two switches are connected by 
a pivot, so when one switch slides on, the other will slide off. As the 
switches are connected there is only one switch, Switch A that we can 
operate. The truth table therefore only has one input, in two states – 
on and off. When articulating this behaviour, encourage answers along 
the lines of ‘when the switch is on, the bulb is NOT. 

We have developed truth tables for three different circuits. These circuits provide a way of controlling 
output (lighting a bulb) by altering one or more inputs. They are the three fundamental logic gates 

 AND: both inputs must be true (on) for the output to be true (on) 

 OR: either input (or both) being true (on) means the output will be true (on) and 

 NOT: the output is the opposite of the input.  

AND, OR and NOT are the three constructs identified by George Boole as the foundation for all logical 
thought. Any complex logical statement can be expressed in combinations of these constructs. 

How would we develop a truth table for circuits with 3 switches? Exactly the same 
way. Put all the input headings in a line, then fill in the table with incrementing 
binary numbers. With 3 inputs there are 8 possible combinations to check (binary 
000 to 111). Give out the activity sheet and let children construct the circuits and 
complete the truth tables. When they have the outputs, a sequence of clicks will 
reveal the answers. 

To calculate the output from several gates combined we first label all the inputs, 
the final output and any interim outputs, that feed into the next logic gate. 
Being systematic avoids making silly errors. We create a truth table as before, 
and fill in all the input combinations: A, B and C. Each interim value can then be 
calculated. Ask a student to fill in D, before revealing the answer. Similarly, ask 
students to complete E and the final output Q. Clicks will reveal each correct 
answer in turn. 

There are many fun ways to reinforce basic understanding of the logical 
constructs. George Boole says… is played in the same manner as Simon says, but 
with an emphasis on using statements that include AND, OR and NOT e.g. … put 
your right elbow on your right knee AND do NOT lift your right foot off the 
ground. 

A reinforcement game, that focuses on interpreting logical expressions is a 
simple ‘poker’ dice based game, where each player has 3 rolls of 5 dice, and can 
set aside any on each roll. At the end of the 3 rolls the player scores points, based 
on the criteria shown. Although any number can participate, it works best for 
groups of 2 or 3 players, depending on how many dice are available, or seating 
arrangements. If larger groups are required, splitting into two teams so players 
collaborate can also generate good discussion. 
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Human Logic Circuits 

As George Boole articulated all those years ago, logic gates can be used to frame human statements. A short 
two minute clip from an old Canadian television series, The Essence of the Computer, broadcast in 1983 
makes the point well (youtu.be/6wU2NoAtWKM) and provides a good link for students between circuits and 
logical expressions. How could we express the statement “Jane will only go to the cinema tonight if a good 
film is on AND she has enough money.” in a truth table? What would be the two inputs? Here the inputs 
(conditions) are a good film and enough money. The output will only be yes (true) IF both conditions are 
true. The truth table is that for an AND gate. Rather than just using circles to represent gates, each type of 
logic gate has its own symbol. Two more statements introduce both the OR and NOT symbols. 

Human logic circuits are a great way to develop an understanding of 
combinational logic. Supporting material, based on activities from the Royal 
Institution are included in the resources. It requires groups of 7 to 9 students. It 
often works well outdoors but an initial walkthrough indoors helps ensure 
understanding. Start by studying the statement. The challenge is to represent it 
as a human circuit. Once it is understood, the groups need to assign roles. 
Children connect using hands on shoulders as shown in the help sheet.  

They transmit a Yes (1) by squeezing the shoulder. No squeeze, represents No 
(0). The challenge requires some co-ordination by the leader, so inputs are sent 
at the same time, and each gate has time to calculate their response. Each 
subsequent output must also be transmitted on time to allow the logic to ripple 
through the circuit. A blank truth table is included for the example activity, but 
pupils should develop their own for any further challenges. 

The activity comes from the website that supports the Royal Institution Christmas Lectures 2008, presented 
by Chris Bishop. Each of the five lectures is well worth viewing for ideas about how to present many of the 
fundamental aspects of computing. Lecture 2 ‘Chips With Everything’ looks at the development of several 
recent technologies and is particularly pertinent as a follow up to this unit. They can be viewed from the RI 
website (goo.gl/FQCjH4)  – each one is around 40 minutes. 

Visualising Logic 

Logical constructs can be visualised using Venn diagrams. By making links to set theory, work in this area can 
be linked to, for example, exercises developing smart web search techniques. This can be helpful to illustrate 
how an AND restricts output, which can be a common misunderstanding. An OR will return elements from 
both sets. And a NOT will restrict to a given attribute, removing the intersecting cohort. 

A logic gate takes one or more inputs, and generates one output. This is an abstract representation of the 
gate – hiding the particulars of what it is constructed from, and concentrating on its behaviour. We noted 
that gates can be made from anything. We have used switches, bulbs and humans, but the same behaviour 
can be built from many components. An example constructs them from dominos. The more complex circuit 
shown might make a good activity if children can’t work out what it does (AND). A video of a slightly 
different approach (youtu.be/H-53TVR9EOw) also provides an example using marble runs.  

Diagrams demonstrate how we could fashion an OR and a NOT 
function using simple mechanical components. They come from a 
wonderful book “The Pattern On The Stone” by Danny Hillis (see 
further reading). Ask students to develop a truth table for the 
combinational logic circuit, constructed from 3 NOT gates and an 
OR gate. Point out that it performs as an AND gate. Only when 
both inputs are pushed (on), will the output also move forward. 

https://youtu.be/6wU2NoAtWKM
http://goo.gl/FQCjH4
https://youtu.be/H-53TVR9EOw
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Introducing Boolean Algebra 

The point is that the behaviour of one logic gate can be reproduced by combining other logic gates. This key 
idea underpins an understanding of how complex circuits can be constructed. We use it to introduce three 
new gates, and the idea of Boolean algebra. We are familiar with the 3 core functions, AND, OR and NOT, 
and their symbols and truth tables. We can use algebraic expressions to indicate the same function. AND is 
represented as AB. OR, somewhat confusingly is expressed as A+B, NOT is written 𝐴̅ to indicate inversion. 

Three new gates are introduced via truth tables. The first (opposite of an AND) is known as a NAND. A NOR is 
the negation of OR. The last symbol is XOR, short for ‘exclusive OR’; one OR the other, but not both.  

Each expression can also be written in algebraic form as shown. Remember the 
key idea: every possible Boolean function can be constructed using 
combinations of AND, OR and NOT. This is easy to see with a NAND, which 
could be accomplished by connecting the output from an AND gate through a 
NOT gate, as shown. It’s the same with NOR, but what about the XOR? It’s not 
at all clear, either from the symbol, or the algebraic expression how this could 
be constructed. 

Every logical behaviour, beyond a simple AND, OR or NOT, can be described by 
its interface, that is the inputs it takes, and the corresponding outputs. The XOR 
interface is described in the truth table. How it could be implemented is shown, 
using 2 AND, an OR and 2 NOT gates. But once it is implemented, we can forget 
about the detail, and consider only the interface when designing more complex 
circuits. Complex circuits are built from less complex chips, but the design is 
based on the interface, rather than worrying about implementation.  

Any chip can be decomposed down to individual AND, OR and NOT components. There is no better example 
of the relationship between decomposition and abstraction than chip design. Once constructed, the detail of 
the implementation can be abstracted away. The circuit designers can focus on connecting interfaces, 
without worrying about the detail of implementation.  

To prove that this is possible we can take every possible permutation of output, for the combination of two 
inputs. This is provided in the table shown. It has 4 columns, one for the output for each combination of 
input 00,01,10,11, like our truth tables, but arranged as columns rather than rows. Take time to understand 
this – it is central to the upcoming proof. In the column underneath, we show each truth table output. The 
first two are shown initially, representing a constant zero output and the output derived from an AND gate. 
To ensure we consider every possible permutation of output, in the same way as we construct a truth table, 
we simply list the binary combinations from 0000 to 1111.  

We now have every possible interface for two inputs. Each row represents a 
named function: for example we can see the interface for AND in the second 
row down. All the others are listed below it in the first column. Finally, the 
second column expresses the implementation in algebraic form.  

If this seems a little complicated take one row and investigate it. You can see, 
for example how the table lists the interface, and implementation for the XOR 
we used as a demonstration. 

You may wonder why we bother with an algebraic representation. When logic circuits are combined, it is 
often the case that some gates will be redundant, or the circuit could be simplified to use less gates, whilst 
keeping the interface the same. Boolean algebra makes such simplification easier, as the algebraic 
expressions can be simplified in much the same way as mathematical equations can also be simplified. This 
isn’t of interest at KS3, but it does feature on courses at A Level.  


