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Background  

Look in any Computing textbooks aimed at Key Stages 3 and 4 and you will probably find an illustration of a 
computer in terms of a simple Input / Process / Output model. This is very helpful for abstracting away much 
of the technical detail of a particular device, and is a useful starting point for children to consider what a 
computer does. All computers ‘compute’ but for curious children this simple model simply begs new 
questions. What is a computation? How might it be represented? Computer scientists have developed 
models that tackle these questions. Finite-state machines are one way to represent the steps involved in a 
particular process. Many teachers will not be aware of these theoretical models. Finite-state machines (FSM) 
allow us to model processes and provide another way of expressing a sequence of commands ie a program. 
They articulate an algorithm through a ‘state diagram’. They are particularly useful in checking string 
patterns and allow us to introduce some key ideas behind the structure of ‘formal’ languages. Once familiar 
with the idea of a FSM, they also provide an alternative approach for solving challenges and creating simple 
programs. 

Finite-state machines have limitations too. They are best considered as part of a hierarchy of computational 
models, spanning from simple data manipulation through Logic Gates to full blown general purpose 
computers. A FSM connected to some storage facility, provides the basis of a theoretical computer, a ‘Turing 
machine’. A theoretical model can play a central role in exploring the limits of computation. Just as 
algorithmic explorations uncover hard (or intractable) problems, through theoretical models computer 
scientists could reason about what was computable, and what wasn’t. Unlike the common sense idea that 
computers will, one day, be able to do anything, computer science can demonstrate there are things 
computers will never be able to do. 

The aim of the day 
The aim of the unit is summarised in the learning objectives for teachers. The primary aim is to educate 
teachers and illustrate the breadth and depth of Computer Science. The specific outcomes for teachers from 
this unit, are 

 To understand the purpose of state diagrams. 

 To appreciate the concept of a finite-state machine and provide examples. 

 Understand their place in language theory and regular expressions. 

 Be familiar with more advanced models of computation. 

 Recognise the importance of a Turing Machine in defining algorithms and identifying the limits of 
computation. 

The purpose of this Tenderfoot session is to equip trainers with material and ideas to meet these outcomes 
and broaden the outlook of teachers new to Computing. It hopes to provide a buffet of resources on which 
teachers can draw, to enrich their Key Stage 3 lessons, at the same time as meeting the key aim: providing 
greater depth of knowledge for teachers themselves. Developing teachers is the focus, not providing 
activities for pupils. 

Throughout the material there are references to famous computer scientists and lots of pointers to other 
material. The aim is to encourage teachers to delve deeper and take ideas further.  

Before delivering the unit, please check you are comfortable with the narrative and references to other 
material. These trainer’s notes include a summary of each activity. Ensure you rehearse the delivery to 
familiarise yourself with transitions and animations. The slides include further detailed notes. 
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Keep in mind the main purpose of the session – to engage experienced teachers with some of the deeper 
ideas in Computer Science they may not be familiar with. This sort of background knowledge is broadly ‘A 
level’ standard. In time, all Computing teachers should have this grounding, so the aim is to empower the 
experienced teachers, providing them with material they can deliver and use with less experienced 
colleagues in shorter training sessions.  

There are lots of exercises and supplementary material. The pace should be fast, with the assumption that 
the audience are experienced teachers, probably already teaching to GCSE level, with some familiarity with 
the concepts of Computer Science. As such they will not need to work through every activity in full. 
Sometimes it will be sufficient to part complete an activity so teachers ‘get it’ and can discuss how it might 
be used. Judgement is required and the timings below are indicative, to help with planning. Always be 
flexible and encourage discussion and engagement. Details of each activity are given in the teachers notes. 
Further guidance on the narrative, slide transitions and animation can be found in the slide notes. 

Indicative Timetable  

The trainer’s presentation is broken down into 5 sections, with several formal theoretical inputs and 6 
practical activities outlined below: 

15 minutes 

Establishes key outcomes from the day for teachers (5 mins). 

Sets the session in the context of the key educational goal: developing 
computational thinking (2 mins). 

Formal theory: Introducing the notion of a model of computation with reference to 
some core computational thinking concepts (5 mins).  

90 minutes 

A lengthy session to introduce the terminology and conventions of state diagrams. 

A practical exploration of the properties of a hexahexaflexagon (15 mins).  

Representing the behaviour as a state diagram (15 mins). 

Formal theory: Key rules for state diagrams (5 mins). 

Fickle Fruit: group activity observing, reasoning about, predicting and recording 
behaviour (20 mins). 

Harold the Happy Robot: developing a state diagram (15 mins) 

Looking at further suggestions and materials for class / homework activities: 

Airhead 2020, Thimble Slush and Perfect Pizza (15 mins) 
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75 minutes 

Formal theory: Distinguishing between formal and natural languages. Introducing 
language theory, the structure of language, parse trees and derivation (20 mins). 

Treasure Hunt: explanation of an outdoor activity to introduce FSM (5 mins). 

Eating Your Own Words: outdoor exercise interpreting state diagrams and 
detecting patterns in strings. Introducing wild cards and notation for string 
patterns. Expressing rules for strings as state diagrams (20 mins). 

Reverse Pictionary: class exercise encouraging students to 
design their own notations for regular languages; a motivator 
for learning a precise notation whilst reinforcing 
understanding of FSMs. Concludes by drawing out notation 
for regular expressions (20 mins). 

Formal theory explaining regular expressions. A look at Mr McDuff’s Breakfast and 
other possible activities for pupils, and tools for teachers to familiarise themselves 
with regular expressions (10 mins). 

60 minutes 

A consideration of pedagogy: a different way to introduce programming. 
Expressing algorithms through finite-state machines (5 mins). 

A practical session introducing Kara, a simple programming 
environment. Group walk through to establish basics of the 
interface (20 mins). 

Practical programming challenges (30 mins). 

10 minutes 

A short discussion to promote classroom research and encourage reflective 
practice. 

Draw out suggestions for potential research areas and mention possible 
techniques. 

Ends with a quick promotion of the BCS Certificate in Computer Science Teaching 

45 minutes 

Formal theory: Introduces Push-down automata and Turing machines. Summarises 
place of combinational logic, FSM and Turing machines in Chomsky’s hierarchy. 
Emphasises importance of models of computation (10 mins). 

Chocaholic Turing Machine: A practical classroom exercise 
working through the stages required in a Turing machine 
designed to subtract one number from another (20 mins). 

A quick look at Turing Kara and other resources to take the ideas further (5 mins). 

Formal theory: Introduces the concept of a Universal Turing machine and the 
importance of the ‘Halting problem’ (10 mins). 

5 minutes 

Concludes by revisiting the starting point of the day, 
comparing a Universal Turing machine with our original 
model. Considers the wider impact of Alan Turing and lessons 
for children.  

Ends with emphasis on developing computational thinking. 

Distribute any materials and discuss ways to deliver smaller presentations. 

 

Above all else, remember that the aim is to empower attendees to offer similar sessions to colleagues. It 
should be inclusive, enjoyable and embody the CAS ethos of collegiality: There is no ‘them’, only us!  
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When someone books to attend the training session, send a prompt acknowledgment informing them when 
final confirmation and further details will be sent. Set a cut-off date, at which point you decide if there are 
enough bookings to make a viable session. 

Once you have enough people booked, contact them again with brief details and suggested prior reading. 
Although not essential, by suggesting some prior reading you are indicating that this is in depth CPD which 
requires some commitment on the part of the attendees. It also gives you a chance to establish some 
dialogue with attendees prior to the event. With a week to go, you could mail a reminder and enquire about 
the reading and whether it would be useful for teaching. This helps keep the attendees focused on the 
event. 

Prior Reading  

This is one of the more abstract topics covered in the Tenderfoot series and some teachers may struggle to 
see the relevance of the material if they come to it without some prior groundwork. A very straightforward 
video (9 minutes) explaining a finite-state machines can be found at youtu.be/vhiiia1_hC4. This is one of the 
Computerphile videos recommended in the presentation and an excellent introduction to the basics. 

Accessible reading about finite-state machines, and their relevance to formal languages can be found in the 
CS Field Guide being developed at the University of Canterbury, New Zealand. This is still a work in progress. 
At the time of writing the relevant chapter was incomplete. Nonetheless, it provides an excellent 
introduction to the ideas that are developed in the session. Indeed, some of the material is used later the 
presentation. The suggested reading can be found at http://csfieldguide.org.nz/en/chapters/formal-
languages.html, Chapter14, sections 14.1 to 14.3.1 inclusive. Later sections are recommended during the 
presentation.  

Further Reading  

If attendees are inspired to investigate further the Computerphile videos (mentioned in the presentation) 
are a good starting point. Turing machines are introduced at youtu.be/dNRDvLACg5Q and the Halting 
Problem at youtu.be/macM_MtS_w4. A good explanation of Chomsky’s Hierarchy is explained at 
youtu.be/224plb3bCog. 

Much written material relating to language theory, grammars and finite-state machines is probably too 
advanced as introductory material. However, Babbage’s Bag is a good source of material. An eclectic 
selection of articles on the I-Programmer website, their introduction to finite-state machines, goo.gl/4RE1Rk 
would make good reinforcement of the material covered in the session. Turing machines and the halting 
problem are tackled at goo.gl/uZKx3J, whilst goo.gl/bzF69c explains grammar, languages and Backus Naur 
Form in more depth.  

Two books are also worth highlighting. Although long out of 
print, The Pattern On The Stone, written by W. Daniel Hillis is 
an excellent introduction to ‘the simple ideas that make 
computers work’. Chapter 2 sets the idea of finite-state 
machines in that context.  

A more recent book, Nine Algorithms That Changed The 
Future, by John MacCormick has a very accessible explanation 
(chapter 10) of the Halting Problem. The chapter offers an 
exemplar approach to explaining this difficult concept, which 
is covered at A level. 

https://youtu.be/vhiiia1_hC4
http://csfieldguide.org.nz/en/chapters/formal-languages.html
http://csfieldguide.org.nz/en/chapters/formal-languages.html
https://youtu.be/dNRDvLACg5Q
https://youtu.be/macM_MtS_w4
https://youtu.be/224plb3bCog
http://goo.gl/4RE1Rk
http://goo.gl/uZKx3J
http://goo.gl/bzF69c
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Well before the session is due to take place ensure you have considered computer access. Check whether 
attendees will be logging on to institution machines or bringing their own laptops. If BYOD, ensure that is 
made clear in any prior publicity. Check that the venue has a projector and speakers. 

Kara (and Turing Kara) which is used in the session is a Java application. Check this will run on the institution 
computers or, with BYOD, distribute in advance to avoid issues on the day. No installation is required, but 
computers will require the Java Run-time Environment to allow the application to run.   

Ensure there is outside space for the Eating Your Own Words activity, and any state diagrams are drawn out 
in advance. Pavement chalk is easiest for this, but check the hosts are happy. If not, consider marking out 
with string and tape.  

Ensure you have the following general material: 

 Facilities for taking notes (paper and pens) 

 A3 Computational Thinking Posters 

 CAS Publicity: Copies of SwitchedON, BCS Certificate flyers and any local information 

Attendees Materials 

Activity Materials (Per Attendee)  

The 
Tuckerman 
Traverse 

A3 hexahexaflexagon template, part complete, trimmed and folded  

Hexahexaflexagon Instructions  

Exploring A Hexahexaflexagon sheet 

 

 

 

Fickle Fruit Fickle Fruit Vendor Instructions 

Fickle Fruit Class Exercise and Solutions 

Harold Happy Robot Input Rules 

Designing FSM: Hair Dryer Exercise 

Designing FSM: Vending Machine Exercise 

SwitchedON Reprint: State Diagrams 

The Perfect Pizza Problem  

 

 

 

 

 

 

 

Eating Your 
Own Words 

I Have A Spelling Checker Resources 

Eating Your Own Words Photocopy Masters 

Eating Your Own Words Student Instuctions 

 

 

 

Reverse 
Pictionary 

Reverse Pictionary Language Sheet and Diagrams (photocopy masters – per group)  

Kara The 
Ladybird 

Kara application (software) 

Kara manual 

 

 

Chocaholic 
Turing 
Machine 

Chocaholic Subtraction Machine Rules 

7 dark, 15 white counters, 6 coloured ‘lollies’ 

 

 

 

See overleaf for Trainers materials 
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Trainers Materials 
Activity Resources  

The 
Tuckerman 
Traverse 

Large hexahexaflexagon pre constructed (card) 

CS4Fn Hexaflexagon Automata Booklet 

Hexahexaflexagon Instructions  

Exploring A Hexahexaflexagon sheet  

Teacher Notes 

 

 

 

 

 

Fickle Fruit Hat and scarf 

Fickle Fruit Vendor Apples and Bananas (laminated) 

Fickle Fruit Vendor Instructions 

Fickle Fruit Class Exercise and Solutions 

Designing FSM: Hair Dryer Exercise 

Designing FSM: Vending Machine Exercise 

SwitchedON Reprint: State Diagrams 

The Perfect Pizza Problem  

Teacher Notes 

 

 

 

 

 

 

 

 

 

Eating Your 
Own Words 

Pavement Chalk (or string / tape) 

I Have A Spelling Checker Resources 

CS Unplugged Treasure Hunt Resources 

Eating Your Own Words Photocopy Masters 

Eating Your Own Words Student Instuctions 

Teacher Notes 

 

 

 

 

 

 

Reverse 
Pictionary 

Reverse Pictionary Language Sheet and Diagrams (photocopy masters – per group) 

Regular Expressions Further Investigations 

Teacher Notes 

 

 

 

Kara The 
Ladybird 

Kara application (software on shareable media) 

Teacher Notes 

 

 

Chocaholic 
Turing 
Machine 

Chocaholic Subtraction Machine Rules 

7 dark, 15 white counters, 6 coloured ‘lollies’ 

Teacher Notes 

 

 

 

Reflective 
Practitioner 

BCS Certificate Flyers 

Trainers Notes (laminated / card) 

 

 
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The unit presentation is designed to support a full one day session, delivered to CAS Master Teachers and 
other curriculum champions. It will likely be fast paced, delivered to experienced teachers. 

It is envisaged that those attendees will take the material and deliver shorter sessions, either as half day, 
twilight of CAS Hub inputs. It is expected these will take longer to cover each activity as the material will be 
unfamiliar to teachers new to Computer Science. Please find time to discuss with attendees possible ways to 
use the material and encourage them to offer further sessions in their locality. 

Resources 
All supporting material is available for download, corresponding to each session in the Unit.  

The material includes 

 a full presentation to support all the activities covered in the Unit 

 a set of Teachers Notes explaining the material for each session 

 separate activity handouts 

If you intend to use the material at shorter sessions, simply hide the slides not used.  

If you wish to combine material in a different order please consider adding slides to introduce the ‘big 
picture’ at the start and to discuss being a reflective practitioner at the end. Please try to stick to the CAS 
House Style which is outlined on the opening introduction slide. 

Half Day / Twilight CPD Sessions 
It is suggested the material could be delivered as 4 separate shorter sessions, as indicate by the folders. 

 The State We Are In: Introducing the concept of finite-state machines and state diagrams. 

 Mind Your Language: Introducing formal languages and regular expressions. 

 From Diagrams To Programs: Programming challenges using Kara. 

 Computing Without Computers: Introducing Turing machines and Turing Kara challenges.  

Each can be topped and tailed with the Introduction and Conclusion slides.  

Of course, Master Teachers and other trainers can 
combine sessions and activities as they feel best fit the 
local circumstances. 

However, a prerequisite for many of the activities is an 
understanding of a state diagram. The Tuckerman 
Traverse, Fickle Fruit, Treasure Hunt or even the 
Trainsylvania activity in the CS Field Guide all provide 
possible introductions to the concept of a FSM.  

The four suggestions shown are just are a few of the 
possible combinations which allow time to explore 
some of the more formal exercises in more depth. 

Many activities are short enough to introduce at CAS 
Hubs or worked through in a school departmental 
meeting. Whatever ways you choose, the aim is to 
develop teacher appreciation of CS concepts, not just 
demonstrate an activity. We hope they are useful.  
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A practical investigation, exploring the properties of a hexahexaflexagon. Their behaviour is captured in a 
State Diagram and through this the notion of a Finite-State Machine is introduced. 

Preparation required:  
Part complete class set of A3 hexahexaflexagons (trimmed and folded in half) with assembly instructions. A 
Hexahexaflexagon Exploration Sheet per student. 
 

Models Of Computation  

Textbooks often explain computers by reference to Input/Process/Output - a general model of how 
something is computed. Computations can be expressed as algorithms – the steps required to accomplish a 
particular task. Tenderfoot Unit 5 introduces theoretical models of computation that formalise the notion of 
an algorithm. This may seem a bit obscure, but finding ways of expressing algorithms leads to some very big 
questions. Using models of computation, famous computer scientists have shown that there are things 
computers will never be able to solve, no matter how quick or powerful.  

Hexahexaflexagons 

Based on material by Paul Curzon (cs4fn), this activity explores the properties of a 
hexahexaflexagon and uses them to introduce ‘finite-state machines’. The supporting 
booklet is included in the resources and at www.cs4fn.org/hexahexaflexagon/. A 
hexahexaflexagon is a curious hexagonal shape, made by folding a piece of paper. Their 
discovery is credited to British mathematician, Arthur H Stone, studying at Princeton 
University in 1939. Finding his English sized paper didn’t fit his American folder, he tore a strip off and folded 
it up. The Princeton Flexagon Committee was formed with friends, Bryant Tuckerman, Richard Feynman and 
instructor John Tukey to explore their properties. Some years later (1956), mathematician Martin Gardner 
popularised them in the magazine Scientific American. In 2012, to celebrate Martin Gardner's birth, on 21 
October, Vi Hart produced 3 wonderful videos telling the story of the hexaflexagon. They provide an 
excellent introduction to the Tuckerman Traverse: youtu.be/VIVIegSt81k. Can children figure out a way to 
cycle through and display all the faces of a hexahexaflexagon, returning to their starting point? 

 Resources include a template to make hexahexaflexagons. It should be 
enlarged by 141% to fit A3 paper. Small hexahexaflexagons are hard to 
manipulate. The shape is best provided cut out, folded along its length and 
stuck back to back, as accurate folding and sticking is essential. Students can 
work individually or in groups depending on the number available. The 4 steps 
on the handout show how to complete it. If students struggle, encourage them 
to use the video link on the handout. 

Flexing is a matter of pinching and flattening the opposite 
side. The letters and numbers on the flexagon help the 
student’s exploration. Start with the yellow side facing 
you. If assembled correctly, the 3’s should be in a central 
ring and the lower case a’s and b’s together. Always keep 
the flexagon facing the same way up. By pinching and 
pushing, it turns inside out. The pinch points are indicated 
by adjacent pairs of lower case letters (a, b or c). 
Encourage initial exploration to see what can be 
discovered.  

http://www.cs4fn.org/hexahexaflexagon
http://www.cs4fn.org/hexahexaflexagon
https://youtu.be/VIVIegSt81k
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The Tuckerman Traverse 

After a few minutes exploration, introduce the Tuckerman Traverse. Discussion prompts are given in the 
slide notes. How many faces does it have (9)? Some faces have the same colour, but can be seen to be 
different by the positioning of the digits. With the flexagon kept the same way up, each face is identified by 
the central ring of digits. How can we be sure we have explored them all? A diagram is an example of 
abstraction – removing details that obscure understanding. Which details are important? The 3’s in the 
middle identify the face, so we can draw a node. When we pinch at ‘a’, we move to face 2. From face 2 we 
can’t pinch anywhere and move back so the arrow is one way. The faces are indicated by nodes, and the 
transitions indicated by edges linking different faces. Diagrams like these are 
known as directed graphs (digraphs). The graph represents the transitions 

between faces. The edges have a letter assigned, indicating 
where to pinch, and the arrow indicates a direction.  

Working in small groups, students complete the table to 
record results. Exploration needs to be systematic. The 
presentation records the first few moves together. Read the 
slide notes carefully to ensure you understand the animation. 
Make sure students complete the table and add the transition 
to a digraph in the box above.  

The completed graph models the hexahexaflexagon. It is now easy to plan a 
‘Tuckerman Traverse’.  By abstracting away unnecessary detail the problem is 
easier to solve. Indicating where to start (with an arrow), students can trace the 
inputs required to move between different states. A double ring denotes an end 
state. A graph indicating a set of states and inputs required for each transition is 
known as a State Diagram. It expresses the behaviour of a ‘finite-state machine’. 

The graph denotes a finite number of states (nodes). It also indicates the actions (or inputs) required to 
move from one state to another (the letter to pinch). All possible actions (in this case the letters a, b and c) 
are known as the machines alphabet – the only acceptable inputs. State Diagrams can also output things. To 
keep it simple, the only output in this case is displaying the colour and number of the face. State Diagrams 
are extremely useful. They are a visual representation of a potential sequence of inputs/actions and can 
therefore be used to model many computational processes.  

There is a more difficult extension. Turning the flexagon over reveals a face with no numbers in the middle. 
There are many more faces to explore flexing it this way up. Is a full traversal of all sides possible? To answer 
that, we need to decompose the problem into smaller explorations. Decomposing a complex task into 
smaller parts is a key concept in computational thinking. Suggesting what to investigate first makes a good 
discussion. Slide notes provide prompts but it is left as an open ended extension. 

A simple utility for children to create their own hexahexaflexagon, offers a practical element to end the 
activity. The result is a vector graphic which can be scaled to maximise the print area available.  

State Diagrams, as we have seen, can visually represent the behaviour of something that responds to input, 
has a set (finite) number of states, and can (if needed) output something too. Artefacts displaying such 
behaviour are all around us. In Computer Science we call them finite-state machines. Finite-state machines 
are extremely useful. They can be used to model many (but not all) computational processes. The 
presentation considers the behaviour of a ball point pen and a combination lock. Traffic lights are a more 
complex example. A homework exercise might be to draw a state diagram for a pelican crossing, or identify 
other household objects that can be modelled through state diagrams. Lots of simple electrical or 
mechanical devices will fit this description.  



Fickle Fruit: Finite-State Machines  
Teacher Notes to support Tenderfoot Unit 5: Theoretical Computers – Fun with finite-state machines   

 

 

CAS Tenderfoot / MathManiaCS (mathmaniacs.org) 

A finite-state machine is not really a mechanical entity, but an abstract set of instructions which a computer 
can be programmed to follow precisely. The activity, from the MathManiaCS project encourages children to 
reason about what they observe. Finding ways to record observations naturally leads to State Diagrams and 
the notion of a Finite-State Machine. More formal exercises are included to develop techniques illustrated in 
the activity.  

Preparation required:  
For each group: A hat and scarf, Fickle Fruit Vendor Instructions, 6 apples and bananas (or pictures) 
For each pupil: Fickle Fruit Class Exercise and Solutions, Happy Robot Input Rules, rough paper 
Follow up exercises: Designing Finite-State Machines - Hair Dryer and Vending Machine exercises 
Extension: The Perfect Pizza story (all can be provided electronically)  
 

Fickle, Frustrating and Fancy Fruit  

Start the exercise as a class, with one volunteer at the front as a fruit vendor. The vendor 
should wear a hat. Give the volunteer the Fickle Fruit Instruction card. No-one else should 
see it. Instruct students to request (in an orderly fashion) either a banana or apple. The 
vendor responds according to the instructions on the card. Encourage students to keep 
some record of their observations. When familiar with the routine, split into groups with 
one student as fruit vendor. They can take it in turns as the activity progresses. 

In groups, with the fruit vendor in possession of the Fickle Fruit Instruction card only (and starting with a hat 
on), challenge students to place orders for three consecutive apples. If they get the answer quickly (banana, 
banana, banana), repeat the exercise with the vendor starting without a hat. Do they fully understand the 
vendor’s behaviour? Try ordering two bananas then an apple, starting with the vendor in their current attire. 
Then try two apples then a banana. Bring to a close by asking groups to predict the behaviour of the vendor 
and share any methods they have used to record the behaviour. Has anyone drawn a state diagram? Swap 
vendors and use the Frustrating Fruit instructions. They can start with or without the hat. Issue the same 
challenges. Eventually, someone will realise that you cannot place an order for 3 consecutive apples. Stop 
the exercise and ask if they are sure?   

At this stage, we need an organised way of characterising the vendor’s 
behaviour. A slide demonstrates the creation of a state diagram for the Fickle 
Fruit instructions. There are two states for the vendor: Hat and No Hat. We can represent the transition with 
an arrow. We’ll use ‘a’ and ‘b’ to represent apple and banana. We can write the input and output on the 
transition, using a pipe to separate them. So a|b means we asked for an apple and received a banana. The 
presentation allows this to be completed as a class through questions and answers.  

The Fickle Fruit Class exercise asks students to draw the diagram for the Frustrating Fruit vendor. Can the 
students explain why a three apple order is impossible? The answer is in the presentation. Note that a state 
diagram is completely deterministic. Every state must have a transition for 
every possible input. In this case, there are 2 states and 2 possible inputs, so 
four transitions.  

The final exercise is more challenging. The Fancy Fruit vendor has both a hat 
and a scarf. Challenge students to complete the state diagram on the exercise 
sheet. As they don’t know the possible states in advance, complete a rough 
draft first. The solution (on a slide) illustrates a further issue. The transitions 
outgoing from the Hat & Scarf state are identical to those from the None state. 
This is an example of a redundant state. The diagram can therefore be 
simplified, collapsing the two states into one.  
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Harold The Happy Robot 

Once familiar with state diagrams, as a group design a FSM from a given 
specification - the behaviour of “Harold, the happy robot”. At any time, Harold 
is either happy or sad. He is also either charged or not-charged with electricity. 
There are three types of inputs that Harold might get: electricity, music or a 
‘dance’ request. The rules that describe Harold’s behaviour are fairly natural. 
They are reproduced on Happy Robot Card, so each student can have a copy.  

Deciding the states is the key starting point for state diagrams. Is dancing part 
of a state or is it an output? We’ll make it an output (the only output), in 
response to a dance request input. So any output is associated with the 
transition, like the Fruit diagrams. Guide discussion towards discovering the 
states, with ‘dancing’ not part of any in this model: Sad / Uncharged, Happy / 
Uncharged, Happy / Charged and Sad / Charged. Discuss transitions from each 
in turn. The diagram builds in stages, question prompts given in the slide notes.  

Designing Finite-State Machines  

Once students have grasped the principles they could investigate everyday appliances. 
There are two exercises, a hair dryer and vending machine. In the case of the hair 
dryer, point out that there are no outputs on the transitions. The transitions represent 

the input (L-up/down or R-up/down). As the output is constant, it 
makes sense for the state to represent the output e.g. blowing cool air fast. There are two 
conventions for representing FSM’s. Representing output on the state, as we did with the 
hexahexaflexagon, and are now doing with the hair dryer, is known as a Moore machine. 
Representing output on the transition, as we did with the Fickle Fruit machines is known as a 
Mealy machine. Whilst this detail is not needed at KS3, it does feature at A level. A state 
diagram will use one or other representation, the choice usually dictated by the task it 
represents. It is possible to express any Moore machine as a Mealy machine, and vice-versa.  

The vending machine is more challenging. Discussion about representing output is helpful. 
The output is a discrete drink, before returning to a ready state so best represented on a 
transition – a Mealy machine. Deciding on states and types of machine can be difficult, often 
requiring intuition that comes from experience. Be prepared with some good hints. The 
solution to the Slush Dispenser is shown. To check understanding the slide animation 
highlights transitions showing output to use as discussion prompts.  

FSM’s can be very useful for modelling the design of interfaces. Homework might develop diagrams for 
setting the time or alarm on a digital watch. By modelling an interface, design errors can quickly be 
identified. If the FSM that describes a device is complicated it is a warning that the interface will be difficult 
to navigate. This is a huge area in Computer Science: HCI or Human Computer Interaction. Cs4fn host a video 
about setting microwaves (goo.gl/Bv4LZU), pointing out implications for interfaces in serious settings, such 
as hospitals. A reprint from SwitchedON, the CAS magazine, included in the resources looks at how software 
interfaces can be expressed as a FSM. It highlights the importance for software developers in separating the 
processing requirements from the interface behaviour and includes suggestions for further exercises.  

One final, challenging exercise is also included in the resources. From the now defunct MegaMath website, 
the Perfect Pizza is a story in which the behaviour of the Babuie, the pizza maker can be explained by a finite 
-state machine. Slide notes include discussion prompts. A last suggestion, Manufactoria, (goo.gl/B28pKZ) is a 
very challenging game based on finite-state machines - probably one for teachers, rather than students! 

http://goo.gl/Bv4LZU
http://goo.gl/B28pKZ
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CAS Tenderfoot, MegaMath Project, CS Unplugged 

Short exercises and an outdoor activity explore the use of finite-state machines to define language checkers. 
Introduces an awareness of language structure and the notion of context free grammars and language 
translation. 

Preparation required:  
‘I Have A Spelling Checker’, Eating Your Own Words instructions for all students. 
FSA state diagram drawn in playground, paper extension exercise if required. 
Treasure Hunt materials if undertaking that activity. 
 

The Structure Of Language 

Have you ever wondered how a spell check works … and why it sometimes doesn’t! The poem written to 
highlight their limitations was written by Professor Jerrold H. Zar, at Northern Illinois University, in 1992. The 
original and a simpler version (shown) are included. Deriving the correct meaning is a good introductory 
exercise. Homophones (words that sound the same, but are spelt differently) highlight the problem. Natural 
languages, such as English are full of ambiguity and there is more to them than just spelling and grammatical 
rules. Meaning is often dependent on context, which is why online translation services are notorious.  

Natural languages evolve. Formal languages, by contrast are designed. Programming languages adhere to 
strictly defined rules. This makes it possible to accurately translate them into the machine code. If the syntax 
and grammar aren’t perfect, the translator rejects them but there is no contextual ambiguity. Linguistics is 
an important area as computer science strives, not only to define more intuitive programming languages, 
but translation and grammar checking services too. CS4Fn have a child friendly introduction: goo.gl/B47YMv. 

In the 1950’s, Noam Chomsky laid the foundations for analysing languages. He defined a language as a 
sequence of ‘atoms’. Taking English as an example, a sentence is made up of a sequence of words. Words 
are made up of a sequence or string of letters. The letters are the languages’ alphabet – from which more 
complex sequences can be built. Not all possible sequences are valid words.  

Grammatical rules define how the atoms can be combined and 
structured. In this example a sentence is defined as a combination of a 
Noun Phrase ‘symbol’ followed by a Verb Phrase ‘symbol’. All 
subsequent symbols are defined until we get down to actual words in 
the language. The box showing the symbolic representation (note the 
pipe to represent OR) is known as Backus-Naur Form. Developed by 
John Backus and Peter Naur to define Algol, and is now the main 
technique for defining formal languages. To evaluate whether an 
expression is valid, a Parse Tree can break it down into defined symbols. 
This is known as a derivation. Further detail and examples are given in 
the slides / notes.  Essentially it is an exercise in decomposition and 
pattern recognition.  

Languages can be very complex, illustrated by the Java example in the 
presentation. It has hundreds of rules but compilers use them to dissect 
statements into symbols, which decompose into defined atoms. There is a good 
introductory article at goo.gl/B8kR0p . The Computer Science Field Guide 
(csfieldguide.org.nz) chapter on Formal Languages is well worth reading to 
appreciate the depth of this area. 

 

http://goo.gl/B47YMv
http://goo.gl/B8kR0p
http://www.csfieldguide.org.nz/
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Finite-State Machines 

Computer Science will be unfamiliar territory for many ICT teachers. Computerphile, a YouTube channel, has 
250+ short videos on all aspects of computing topics.  youtu.be/vhiiia1_hC4 is an excellent (8 min) 
explanation of link between finite-state machines, languages and computer science. There are several 
related videos. If you haven’t familiarised students with the idea of a finite-state 
machine, the CSUnplugged Treasure Hunt activity described in the presentation is 
good introduction. As the main activity is outdoors, this makes a good starter. A 2 
minute video: csunplugged.org/videos/#Finite_State_Automata explains it well. 
Such machines are known as acceptors or finite-state automata (FSA) since the 
output is indicated by where you finish.  

Eating Your Own Words  

Students act out the operation of a FSA drawn in the 
playground. They create ‘tickets’ – a string of letters 
that serve as inputs. If they end up in an accepting 
state they receive a sweet - their ticket was 
recognized by the machine as a word in its 
language. An easier example is supplied but the one 
illustrated is a good starting point for KS3 students. 
The states should be large enough to stand in. Place 
a container with lots of small sweets in the 
accepting state (the double circle). Ensure all 
children can see what is happening.  

Give out the instructions. The machine understands its own language, not ours. Made up of just two letters, 
a and b, it may seem a bit silly at first. There are lots of words in its language, but not all combinations of ‘a’ 
and ‘b’ are words it recognises. Start with short words (less than 8 letters). Give students the first few as a 
walk through. The teacher is best positioned between the Start and Accepting states. The task is to write a 
word made of ‘a’s and ‘b’s. If they end up finishing in the accepting state, they get a sweet. They don’t if they 
are passing through the accepting state before the word is complete. Having finished, rejoin the end of the 
queue for another go. For those who catch on quickly, try words over 14 letters long. 

Back in the classroom encourage children to articulate what makes acceptable words. Through pattern 
recognition, children generalise the rules of the machine, which they apply when choosing new words. What 
is the longest word in this machines language? Clearly we can’t write a word with an infinite number of 
letters, so we need a shortcut for writing ‘any number of’ ‘a’s or ‘b’s. Children may be familiar with the use 
of wild cards, but if not, now is the time to introduce them. An asterix represents ‘zero or more’ of the 
previous character. To reinforce understanding, you could extend the FSA exercise by moving the Accepting 
State, adding a second Accepting State or ask students to choose words that involve the use of a wild card. 

The exercise could also be repeated with the more complex machine 
included. This FSA introduces a 3 letter alphabet, and offers more 
challenge. It can be approached as a paper exercise, and is included in the 
photocopiable resources. Generalising from specific instances to broader 
rules takes practice. The presentation ends with three simple FSAs. 
Challenge the students to express the rules for acceptable words and ask if 
any can be expressed using wildcards? It’s not easy. We really need tools 
for expressing some other rules. There are recognised shortcuts used to 

write general or ‘regular expressions’ (‘regex’ for short) and any regular expression can be expressed as a 
finite state machine. The next activity introduces regular expressions. 

https://youtu.be/vhiiia1_hC4
http://csunplugged.org/videos/#Finite_State_Automata
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CAS Tenderfoot 

A practical activity to develop familiarity with finite-state automata (FSA) and a fun classroom 
demonstration. They encourage students to design their own notations for regular languages, and provide 
motivation for learning precise notation. 

Preparation required:  
Reverse Pictionary sheets for students. 
A variety of props for Mr McDuff’s breakfast. 
 

Reverse Pictionary 

This exercise, developed by Linda Pettigrew, comes from the CS Field Guide produced in New Zealand. Split 
the class in half and ask them to pair up. Give each pair in one half a copy of the FSM-A1 diagram, and those 
in the other half a copy FSM-B1. Give each pair a Language Sheet as well. They will be writing in the top half 
only. Each half should not see the FSM the other half have been given.  

Give the pairs five minutes to come up with a description of the words their FSM will accept. Encourage them 
to think about ways to describe repeating sequences. They may be familiar with some symbols used in 
regular expressions, such as *, but they can use anything they 
decide. But they also need to list the meaning of any symbols 
they use so others can interpret them. 

You may need to help get the students started. For example, since 
* represents zero or more instances of a character, perhaps we 
should have a symbol to mean ‘one or more’ instances (a + 
perhaps). We could then write he+p. The whole phrase itself can 
be repeated, with a hyphen, so how might we represent the 
repetition of a string rather than a character, and so on. When 
they are happy with their description and definitions, each pair 
completes the Language Description box. 

Pairs then swap the language description with a pair in the other 
half.  

The receiving pair now complete the bottom half of the sheet. 
Having read the description they enter six strings they think would 
be accepted, and six they think would be rejected.  

Finally, the sheets are gathered in and redistributed back to the 
original half. They do not have to return to the original pair. Each 
pair now acts as a ‘computer’ taking each input string provided at 
the bottom and confirming it conforms to the FSM. If a string is 
accepted / rejected incorrectly, the pair have to work out where the 
error arose. 

Once familiar with the activity, a second set of FSM can be shared 
and the activity repeated.  

Follow up discussion can investigate whether some descriptions were longer than needed, or confusing, and 
whether the language of the FSM was captured in the description. This provides a constructivist approach to 
introducing the notation of regular expressions whilst emphasising the point that any language expressed by 
a FSM can be represented as a regular expression. 
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Mister McDuff’s Breakfast  

An idea from the MegaMath project, Mr McDuff’s Breakfast 
is a child friendly activity to introduce regex notation. This 
can be acted out to a class. Mr McDuff likes his breakfast. His 
choices are summarised in the items listed. Mr McDuff likes 
variety. Students should try to summarise the rules of his 
eating habits. 

Make several breakfasts in front of the class until someone 
can explain that Mr McDuff always has a bowl of oatmeal 
and a piece of toast. 

He sometimes has milk or raisins or sugar on his oatmeal. He may have it plain. If he has sugar, he may have 
several spoons, similarly with handfuls of raisins or splashes of milk. His toast will always have either jam or 
peanut butter. We can summarise all his breakfasts in the regular expression. Note the ‘pipe’ symbol (|) here 
signifies OR, not the distinction between input and output, as in a finite-state machine. 

Three key symbols to emphasise: 

 * represents zero or more of the preceding element 

 | represents alternatives (or) 

 ( ) enclose multiple items to which a symbol applies  

Armed with this knowledge, can the children come up with a regular expression for their own breakfast? 
They should include anything they drink as well as eat. 

Taking It Further 

CS4Fn has a very good article aimed at secondary aged students. It introduces 
regular expressions by looking at knitting patterns. You can find the article via this 
link: goo.gl/h3lzvF. It introduces all the key notation for writing regular 
expressions. A good supporting homework.  

RegexOne (regexone.com) is a good website for teachers 
to learn the basics of writing Regular Expressions. It’s a 
little dry, and not recommended for children. However, 
students would benefit from some experience of writing 
regular expressions. In themselves they are good pattern 
matching exercises, an essential element in 
computational thinking. But practical exercises can also 
illustrate the sort of ‘real world’ tasks in which Regular 
Expressions (and Finite State Machines) might be used.  

Regular Expressions: Further Investigations is a 
supplementary document which provides further 
suggestions and detailed exercises teachers can use in 
class. 

These start with practical exercises using the Find feature in 
Word to setting your own exercises using Rubular, one of 
many regex checking utilities. 

Whether or not these are used with students, teachers 
unfamiliar with this area would benefit from working 
through the suggestions.  

http://goo.gl/h3lzvF
http://regexone.com/


Regular Expressions: Further Investigations 

  
Source: CS Field Guide, New Zealand 
               csfieldguide.org.nz 

Resources to support Tenderfoot Unit 5: Theoretical Computers  

Suggestions for teachers 
Regular expressions are closely related to finite state automata, and both are bound up with formal 
languages. Every finite state automaton can be converted to a regular expression that shows exactly what it 
does (and doesn’t) match. Regular expressions are usually easier for humans to read. For machines, a 
computer program can convert any regular expression to an FSA, and then the computer can follow very 
simple rules to check the input. 

Regular expressions are a simple way to search for things in an input, or to specify what kind of input will be 
accepted as legitimate. For example, many web scripting programs use them to check input for patterns like 
dates, email addresses and URLs. Applications like spreadsheets and word processors may have them and 
they’re built into most programming languages. Whilst all are based on some foundation symbols, they 
differ in some particular symbol options they offer. For this reason, at this level it is probably best to select 
one context for exercises to minimise any potential confusion for students. By the same token, it is probably 
best to develop exercises that focus on the basic, widely used common symbol set. 

The simplest kind of exercise is searching for matching text. This has particular 
practical value for students, who should be getting to grips with basic editing tools 
and techniques.  

Microsoft Word has a Find command which can provide a good starting point and 
introduce children to the utility of the Find / Replace feature. When selected, if you 
enable the ‘Use Wildcards’ option, it can implement regular expressions. Graham 
Mayor provides instructions for using wildcards at goo.gl/I9XCoq. The basic symbols 
used are common to most regular expression editors. The article concludes with 
some excellent practical exercises, such as reversing forename and surnames in a 
list, transposing dates, and finding and formatting text such as quotations. 

Rubular is a regular expression editor for the Ruby 
programming language. The symbol set it uses is common 
to many high level programming languages. You can access 
a simple text matching exercise using this link: 
goo.gl/TbAhYg   A new window to the Rubular system will 
open as shown. If you enter “cat”, it should find 6 matches 
in the test strings. Now try typing a dot (full stop) as the 
fourth character: “cat.”. In a regular expression, ”.” can 
match any single character.  

Try adding more dots before and after “cat”. How about “cat.s” or “cat..n”? 

Now try searching for “ic.”. The ”.” matches any letter, but if you really wanted a full stop, you need to write 
it like this “ic\.” The backslash ‘escapes’ the dot from being a regex symbol, and treats it as a character to 
match. You can use this search to find “ic” at the end of a sentence. 

Another special symbol is “\d”, which matches any digit. Try matching 2, 3 or 4 digits in a row (for example, 
two digits in a row is “\d\d”). 

To choose from a small set of characters, try “[ua]ff”. Either of the characters in the square brackets will match. 
Try writing a regular expression that will match “fat”, “sat” and “mat”, but not “cat”. 

A suitable expression is [fsm]at 

A shortcut for “[mnopqrs]” is “[m-s]”; try “[m-s]at” and “[4-6]”. 

http://goo.gl/I9XCoq
http://goo.gl/TbAhYg


 

 

Another useful shortcut is being able to match repeated letters. There are four common rules: 

• a* matches 0 or more repetitions of a 
• a+ matches 1 or more repetitions of a 
• a? matches 0 or 1 occurrences of a (that is, a is optional) 
• a{5} matches “aaaaa” (that is, a repeated 5 times) 

Try experimenting with the examples in the box left. 

If you want to choose between options, the vertical bar is 
useful. Try the expressions in the box rightt and work out 
what they match. You can type extra text into the test string 
area in Rubular if you want to experiment.  

Notice the use of brackets to group parts of the regular 
expression. It’s useful if you want the “+” or “*” to apply to 
more than one character. 

Once familiar with these try to write a regex that matches the first two words, but not the last three in the 
following link: goo.gl/9ZniUj.   

Of course, regular expressions are mainly used for more serious purposes. Click on the following challenge to 
get some new text to search: goo.gl/MWIYCY. Can you write an expression to find the dates in the text? 
Here’s one option, but it’s not perfect: \d [A-Z][a-z][a-z] \d\d\d\d Can you improve on it? What about phone 
numbers? You’ll need to think about what variations of phone numbers are common! How about finding 
email addresses? 

Some of these are difficult challenges. A great feature of 
Rubular is that you can develop your own challenges with 
sets of test strings for students to use. 

Note the ‘make permalink’ option in the screenshot. 

This allows you to prepare your own test strings and share a 
link (like the examples above) with your students. If you are 
struggling with the e-mail challenge, the screenshot shows 
an example solution.    

Regular expressions do have their limits — for example, you won’t be able to create one that can match 
palindromes (words and phrases that are the same backwards as forwards, such as “kayak”, “rotator” and 
“hannah”), and you can’t use one to detect strings that consist of n repeats of the letter “a” followed by n 
repeats of the letter “b”. There are other systems for doing that and these are an important part of the 
theory of Formal Languages. For computer scientists, an important part of the value of Finite State Machines 
and other theoretical models is in exploring the limitations of what they can do. Nevertheless, regular 
expressions are very useful for a lot of common pattern matching requirements.  

As noted previously, any regular expression has a corresponding Finite State Automata. At KS4 or KS5, you 
might want to consider challenging students to code a Finite State Automata. It’s a fairly straightforward 
challenge. Each state can be defined as a function, with the transitions expressed in a series of IF statements. 
The input string needs to be sliced, the first character examined and passed to the start state function. 

Subsequent characters can be retrieved by putting the string slicing within a 
counter controlled loop. The current state can be tracked with a variable. 

Much of the material for this section comes from the CS Field Guide produced 
in New Zealand. The student guide can be found at csfieldguide.org.nz, with 
supplementary material in the teacher guide at goo.gl/nMpwPZ.  

f+ 

pf*t 

af* 

f*t 

f{5} 

.{5}n 

was|that|hat 

was|t?hat 

th(at|e) cat 

[Tt]h(at|e) [fc]at 

(ff)+ 

f(ff)+ 

http://goo.gl/9ZniUj
http://goo.gl/MWIYCY
http://csfieldguide.org.nz/
http://goo.gl/nMpwPZ
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CAS Tenderfoot 

Kara is a programmable ladybird. This activity uses Kara as a vehicle for introducing programming and 
alternative ways of thinking about algorithms. 

Preparation required:  
Kara available on class computers. Check to ensure security settings allow Java based applications. 
Kara manual for each student as reference. 
 

Finite-State Machines 

This is a practical session looking at introducing programming through Finite State Machines. The application 
we’ll use, Kara, was born in the research done by Raimond Reichert at ETH, Zurich (a leading STEM 
University) in the years 1999-2003. He was looking at ways that theoretical computers could be used to 
introduce the fundamental concepts of Computer Science and was an early advocate of making computer 
science a part of general school education. He wrote, “Programming practiced as an educational exercise … 
is best learned in a toy environment, designed to illustrate selected concepts in the simplest possible setting. 
The fundamental concepts of programming may be intellectually demanding, but they are not complex in 
the sense of requiring mastery of lots of details. Instead of using a programming language, we use a simpler 
model … finite-state machines.” This approach has certain advantages. Reichert goes on to say, “It is easy to 
represent them in a graphical manner. Paths of execution are defined statically as paths in a directed graph; 
no other control structures are needed.” A program can be defined by creating a state diagram, and children 
can quickly produce diagrams that can do fairly powerful things. 

Introducing Kara 

Kara, a Java application is free to download (goo.gl/OPZKor) and requires no 
installation. It comes with a handy 7 page manual which you can distribute to 
children. Both are included in the resources. The presentation is a practical 
introduction designed to be followed by the class. When you run the 
application, Kara’s world opens. It is a very simple world, consisting of a grid of 
squares. Each square can have leaves, mushrooms or trees in them, but we start 
by just placing Kara in her world (by dragging). 

The Programming button opens a second window where pupils build their Finite 
State Machine. It already has an end state in the diagram. Down the left hand 
side are controls to let you create, edit and delete states. Create a new state, 
named S1. The new state appears in your diagram. If you hover the mouse over 
the state, with the MIDDLE highlighted, you can move it into the centre of the 
diagram and make it the Start State, by selecting that option on the left. 

With the mouse over the EDGE of the state, we can draw our transitions. 
Initially, draw a line, back to itself, as shown. In the lower half of the window, the 
transition has been recorded. Note the tab, which indicates which state we have 
selected. Notice also the ‘Next State’, which indicates we remain in S1.  

Look at the options on the left. These allow Kara to move forward, turn left and 
right, pick up or put down an object. Add a move forward command to the 
transition definition (simply drag it across). When executed Kara will move 
forward one square, return to S1, move forward again, return to S1 and so on, 
moving forward continually. We’ve written our first program, expressed as a 
Finite State Machine, which implements a continuous loop. 

http://goo.gl/OPZKor
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There are only 3 constructs in programming: Sequence, Selection and Repetition.  

We can make Kara’s world more exciting by adding a mushroom! Kara should 
continue moving forward until she bumps into a mushroom. Then she should 
stop. How might we express this in the FSM?  

The discussion should draw out the need for a transition to the Stop state, but 
also the need to test for a mushroom at S1. We need to add a sensor, the input 
from which will determine which transition to take. With S1 selected, activate 
the Edit State option and add a mushroom sensor. 

When you return to the Programming window, notice how the sensor has been 
added to the state definition. We can now set different actions in answer to the 
condition by selecting the Yes or No option, and adding a second statement 
moving Kara to the Stop state.  

Thinking again about our programming constructs, we’ve now implemented an 
IF statement, or selection. The state diagram will update and when the program 
is executed Kara should stop at the mushroom. 

The final part of the presentation adds a tree into Kara’s path. When Kara detects a tree, we want her to go 
round it, before continuing on her way. Check the students can recount the steps involved:  
• Edit S1 
• Add a Tree sensor 
• Assign the correct actions to each condition 

With two sensors there are four possible combinations. In this case, 
we don’t need to consider what would happen if Kara sensed both a 
tree and a mushroom in front because only one element can be on 
one square. However, students will need to consider all 
combinations when trees are detected to the side, whilst 
mushrooms are in front.  

There are similar considerations with leaves, which are detected when they are underneath Kara. These are 
encountered in the tasks, and can be linked to work with students developing truth tables. Notice here how 
we have a sequence of actions triggered by a condition, the third of our key programming constructs. 

Using the usual icon saves a finite-state machine as a file with a .kara extension. Note that it will not save the 
world you have configured. To do that, you will need to use the same save icon in Kara’s world. These are 
saved as files with a .world extension 

Kara comes with a series of graded exercises built in. The drop down list 
in Kara’s world reveals what is available.  

The easy challenges should be accessible to KS3 children, whilst the 
harder challenges provide plenty of scope for differentiation and 
extension work.  

As well as the explanation of the task, each challenge comes with 
several preconfigured worlds to try your solution. Notice that a world 
can be constrained to just a few tiles, rather than the whole grid.  

Solutions and hints to the easy challenges are provided in the 
resources but it is worth teachers trying to solve as many as possible 
for themselves so they can appreciate any issues students will 
encounter. 
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CAS Tenderfoot 

A paired or group activity that demonstrates the behaviour of a simple Turing machine, in a child friendly 
fashion. 

Preparation required:  
Chocolate buttons (or counters). Minimum 7 dark, 15 white and 6 coloured lollies (or similar) per group 
Chocaholic Turing Machine (cs4fn article) per child 
Chocaholic Subtraction Machine Rules per group  
 

Models of Computation  

What is a computer, and what does it means to compute? Our starting point is a general model of how 
something is computed: taking some input, doing something to it before the results of that process are 
output. We have seen how finite-state automata, are mechanisms for expressing that computational 
process, and can describe simple programs as state transition diagrams. In computer science, we can think of 
finite-state automata as abstract models that helps convey a computational process. 

Wikipedia has a good article on Automata Theory, with a diagram 
that puts combinational logic and finite-state machines at the heart 
of the theory (goo.gl/RAe5yz). We can demonstrate many simple 
processes in terms of collections of logical constructs (AND, OR and 
NOT). We see that when looking at the behaviour of specific circuits, 
for example an adding circuit, within a computer. We call that 
combinational logic. 

Finite-state machines are a more powerful abstraction – the next layer up in our models of computation. But 
there are things they cannot do. You can’t devise a finite-state machine (FSM) to check if a phrase using 
brackets always has a closing bracket to match every opening bracket. Similarly no FSM can check if a word 
is a palindrome (spelt the same backwards). These sort of problems rely on pairing up. We can write FSMs 
that pair up specific numbers of items, but we can’t write a general machine for any number of symbols. The 
presentation considers a FSM that tries to pair up cups and saucers. Notes for the animation are provided 
with the slide. Can you see the problem? 

The name gives it away really. A FINITE state machine cannot have an INFINITE number of states to handle 
an indeterminate number of inputs. It can’t ‘keep count’. It has no memory of what has gone before, it only 
knows what state it is in. For this reason, more flexible models, known as Push Down Automata were 
conceived. In essence these are finite-state machines connected to a memory stack. Now we can just have 
two states for our Cups and Saucers machine, recognising a surplus of either. Each time a cup comes in, we 
simply remove a saucer from the top of the stack. When the stack is empty, we return to the Ready state. 

Think back to the original model of a computer – the Input, Process, Output diagram. A Push Down 
Automaton can be thought of as this, with some form of memory attached to allow it to ‘keep count’. As 
we’ve just seen, that memory is a ‘stack’ which limits what it can do. It can only retrieve things from the top 
of the stack. 

A more general model, which allows access to any element of memory 
is known as a Turing Machine … and it has a remarkable history. In 
computer science, the different levels of the diagram above are known 
as the ‘Chomsky hierarchy’. There’s more to it than we have considered 
here, but if you’d like to delve deeper, Computerphile is the place to 
start (youtu.be/224plb3bCog). If you are likely to be teaching A level at 
any point all the related Computerphile videos are worth watching. 

https://goo.gl/RAe5yz
https://youtu.be/224plb3bCog
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Turing Machines 

The Turing Machine was conceived in the 1930’s by Alan Turing, a mathematical genius best known for his 
role in breaking the Enigma codes in the Second World War. Whilst grappling with whether it was possible to 
determine in advance if a mathematical problem was solvable, various mathematicians tried to develop a 
formal definition of an algorithm. Several ideas were developed independently 

Despite the differences, there was nothing to choose between them – they were all shown to be equivalent 
to each other – an incredible coming together of ideas. Alan Turing conceived the idea of a computing 
machine, which was the most intuitive. He based it on the idea of a human ‘computer’ – someone who did 
calculations in a series of steps, using a scratch pad to jot down parts of the working out. 

It is remarkable for two reasons. First, he had the idea long before any electronic computers had ever been 
built. Secondly, his model has been shown to be as powerful as any computer built since! By powerful, we 
don’t mean fast, we mean it can compute anything any modern computer can compute. This is the heart of 
Computer Science. Turing machines can describe general computations. Having a model of computation 
allows us to reason about what sort of problems are computable, and what are not. Put another way, if 
something can be computed, a Turing machine can be designed to do it. 

So what did Turing envisage? Actually, it is pretty simple. It consists 
of just two things: a very long tape that can move in either direction, 
and a mechanism in the middle that can look at the bit of tape 
beneath it, read what is on it, erase and write other symbols on if 
needed. A short video, ideal for students, explains the place of the 
Turing machine in the development of Alan Turing’s ideas 
(youtu.be/gROuKl82BTk). 

We can simplify a Turing Machine to a schematic: a tape and a 
read/write head. Superficially, it seems very different from our model 
of input-process-output, but consider the parts. The tape can have 
symbols written on it, either before the machine starts, or when it is 
running. So we have some means of inputting information. The 
contents of the tape, whilst it is running, are a store, just like memory 
in a modern computer. When the machine stops what is left on the 
tape can be considered the output. 

‘What it does whilst it is running is determined by the behaviour of the 
Read / Write head. The behaviour can be described by a finite-state 
machine. It acts like the computer processor. In fact we can think of 
modern computer processors as finite-state machines, albeit very 
complicated ones. They contain billions of logic gates which combine to put 
a machine in a particular state on each clock cycle. 

It may seem incredible to children that such a simple machine can do anything a powerful modern computer 
can, so it is worth stressing two important caveats: 

 It has as much memory as it needs (the tape goes on for ever) 

 It has a much running time as it needs 
The second of these caveats is important to emphasise. Turing machines are slow – very slow! 

At KS3, the implications of a Turing Machine for investigating the limits of computation aren’t really 
important. What is, is to make the point that in order to understand how computers compute, we can 
abstract away the specific details of modern computers to focus on the essential process. We can make this 
point by demonstrating how a machine like this can do some simple computation. To do that in a fun way, 
we’ll fall back on our traditional prop of bribing children with sweets. 

https://youtu.be/gROuKl82BTk
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A Chocaholic Turing Machine  

This activity comes from cs4fn, and was first outlined in their special issue to 
celebrate the centenary of Alan Turing’s birth. The whole magazine (issue 14) is 
well worth reading (goo.gl/wYMZAM) if you wish to know more about his life 
and work. A copy is included in the resources. 

Split the class into small groups or pairs. You need a large supply of chocolate buttons, both white and dark. 
Alternatively, use counters (two colours), but it isn’t as much fun. For the example, a minimum of 7 dark and 
15 white are needed for each group, more if other numbers are tried. You also need six different coloured 
lollies per group. These do not have to be edible and could be made of card. Our example uses Red, Orange, 
Violet, Blue, Green and Pink. The activity, with an introductory article can be found on pages 10 & 11 of 
cs4fn (above). Encourage students to read the article first.  

The chocolates represent the starting tape of the Turing Machine. Arrange the opening chocolates in a line 
on the table. The presentation provides a walk-through of the opening moves. We are going to implement a 
subtracting machine. The dark chocolates represent the two numbers we have input, so we are going to 
perform the calculation 4 minus 3. Representing numbers in this way is known as the unary number system.  

Our tape distinguishes between the two numbers by having some 
white chocolates between them. Each group also needs the rules 
for the Subtraction Machine. One person should be assigned the 
job of holding the Current Lolly. They start by holding the Red 
Lolly. Starting from the leftmost chocolate, students implement 
the rules outlined on the handout. The presentation includes 
prompts in the slide notes so the animation can proceed in 
response to answers from the children. 

For the first few cycles the Current Lolly is RED, and the Current Chocolate WHITE so the Head moves right 
one place on each cycle. Eventually the Current Chocolate is DARK. It will remain DARK but the Lolly changes 
to ORANGE and the Head moves right. Because the lolly has changed, we now need to look at the rules for 
an ORANGE lolly. You might wonder if anything is ever going to change, but it will. 

When a chocolate changes colour, remove the one from the tape and EAT IT! Replace it with the correct 
colour from the supplies. Children can take turns to move the head so they get an equal chance of eating a 
chocolate. Challenge them to work out the pattern of chocolates when the whole process is finished. 

A further animation allows demonstration of the final two steps. The final output is displayed on the tape. 
One dark chocolate represents the result of the calculation (4 – 3). Ask students to set up their own 
subtraction using different numbers. It will work so long as the first number is larger than the second.  

Ask students to express the rules as a finite-state machine. The presentation 
develops the first two states and notation for the transitions. The transition 
has to represent the initial read (input). It also indicates the tape contents 
after the action and the direction of travel of the head (output). Having 
modelled the first rule, written in the correct way, see if students can add the 
second rule. The subsequent slide gives the complete FSM. 

A final challenge, for able students might be to devise a set of 
rules (or FSM) to increment a unary number by one. They can use 
the same conventions, dark chocolates bounded by white 
chocolates for the starting number. The solution (shown) can be 
worked through as a class example. To check understanding, one 
more transition is needed to trap a faulty layout – can anyone 
spot it? If students are stuck consider the transitions from S2. 

http://goo.gl/wYMZAM
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Taking It Further 

There is a version of Kara designed to implement Turing machines. Turing 
Kara is rather more challenging than Kara, the programmable ladybird, 
explored in a previous session. However, for very able students, it may 
provide good extension challenges. Like Kara, it comes with a set of exercises 
and the first two are accessible to able students at this age. Each challenge 
comes with its own worlds. They restrict the ‘tape’ to a short sequence which 
avoids a lot of potential confusion (in later challenges the tape can be 
represented as a grid). It also introduces ‘bounding symbols (#), and uses 3 
symbols on the tape, a 1 and 0, but also a blank square. 

Finally, two more pointers, specifically for teachers. First, Rob Mullins 
from the Cambridge Computer Lab provides detailed instructions to 
use a Raspberry Pi to build a Turing machine that uses LED’s and an 
interface developed in Python (goo.gl/ouz9Du). Second, on the 
centenary of Alan Turing's birth, Google had a wonderful doodle 
(goo.gl/bvFpbO) with 12 brain teasing puzzles. If you can’t figure out 
what to do, goo.gl/DRCEM8 is an excellent explanatory article. 

In Conclusion 

Alan Turing demonstrated that anything that could be computed, could be computed by a Turing machine. 
Through this computer scientists could explore what was computable, and what wasn’t. Unlike the common 
sense idea that computers will, one day, be able to do anything, computer science can demonstrate there 
are things computers will never be able to do. This is the significance of ‘the halting problem’, something you 
may have heard about, which is introduced at A Level. If a program is running and seems to be stuck, how do 
we know whether it is just taking a long time to perform a calculation or is stuck in an infinite loop? One will 
eventually halt, having performed the calculation, the other will go on for ever. Turing proved computers 
can’t inspect every program and say, conclusively if they will run to completion. It is an example of an 
uncomputable problem, proving there are things that cannot be computed. 

If this seems a little obscure, Turing also offered a more fundamental insight. In a Turing machine, the data is 
put on the tape. The purpose of the machine is captured in the finite-state machine that processes that data, 
like our subtracting machine. But Turing went on to show how the instructions for the finite-state machine 
could also be encoded as symbols on the tape. By running up and down the tape, the machine could read an 
instruction, then find the data and do something to it, before going to read the next instruction, and so on. 
He called this the Universal Machine. 

We can conclude where we started. Turing envisaged a general purpose machine that could be programmed 
by putting different instructions in memory. He envisaged software before any software had been written. 
But since any Turing machine could have the instructions of any computational sequence put on its tape, all 
computers were equivalent in what they could, and could not do. Any machine could ‘emulate’ any other. In 
a sense, it is the ultimate ‘computational abstraction’. A theoretical model of a computer that describes all 
modern computers … developed before any computer had ever been built.  

Following his code breaking exploits in the war Turing went on to play a key role in 
designing the early computers. He laid the foundations for the field of Artificial 
Intelligence. At the time of his death he was exploring computational patterns 
occurring in nature, a field that is really just developing now. Quite simply, he was 
ahead of his time. He died young, a result of being hounded because he was gay. 
Turing was the father of Computer Science, but his life and death provide many 
other lessons for children today. 

https://goo.gl/ouz9Du
http://goo.gl/bvFpbO
http://goo.gl/DRCEM8


A Reflective Practitioner  
Teacher Notes to support Tenderfoot Unit 5: Theoretical Computers – Fun with finite-state machines   

 

 

CAS Tenderfoot 

A new subject offers lots of potential for research on the part of teachers. Throughout the activities in this 
unit there is encouragement to consider issues, reflect on classroom practice and engage in action research. 
Not only does it contribute to practitioner’s professional development, but can provide a key part of the 
evidence required for teacher accreditation via the BCS Certificate in Computer Science Teaching. 

Preparation required:  
Publicity for the BCS Certificate available for all attendees.  
Familiarity with the questions to be posed and consideration of how to facilitate discussions.  
 

Points To Ponder  

Scattered throughout the trainer’s presentation are ‘Points To Ponder’ slides. Usually at the end of 
an activity, they have a dual purpose, both practical and professional. From a practical point of 
view, by posing a question for short discussion, they provide the presenter with a few minutes to 
prepare for the next activity and gather their thoughts. Moreover, they encourage attendees to 
converse with each other. The aim is not to engage in a lengthy discussion, but to plant ideas that 
could be pursued as classroom research. Near the end of the presentation, we hope you will raise 
the value of such action research. 

In this unit, the questions posed at the end of an activity are: 

The Tuckerman Traverse: The National Curriculum makes no mention of finite-state machines. What is the 
value in considering the National Curriculum when planning our teaching? 

Fickle Fruit: How many examples might a key stage 3 pupil need to be able to generalise the notion of a 
‘finite-state machine’ (FSM) 

Reverse Pictionary: What cross-curriculum benefits might accrue from studying finite-state machines and 
regular expressions? Could it impact on literacy? 

Kara, The Programmable Ladybird: Does the use of state diagrams and finite-state machines offer an 
alternative approach for introducing programming? 

Class Based Research 

Why? Before embarking on the last activity, it is worth pausing to prompt a discussion about the value of 

classroom research both to support continuing professional development and to inform the wider teaching 
community. Use the terms “teacher enquiry”, “action research”, “reflective practitioner” and “practitioner 
research”. Teaching computer programming is a relatively new activity. Many teachers are experiencing it 
for the first time. Those with experience can offer valuable support, advice and information to other 
colleagues. There are lots of opportunities for colleagues, old and new to contribute to an emerging 
pedagogy. 
Inform attendees of the CAS Teacher Inquiry in Computing Education project. It provides a forum and focus 
for research in the field of computing. It can be accessed from the home page of the CAS website, under the 
link to projects: http://www.computingatschool.org.uk/ 

Research an area in which teachers have ready access to the data but be aware of researcher bias and local 
ethical considerations. Don’t try to prove something you believe – always think that you are “bringing a 
better understanding” of the situation – it helps avoid bias. 

http://www.computingatschool.org.uk/
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What? Emphasise the key words such as “find out”, “evaluate” and “compare” to spark ideas. Each of 

the following give examples for a possible focus for research: 
Find out from colleagues in English which aspects of this topic would support their pupils’ development. 

Evaluate the use of finite-state machines as a vehicle to introduce programming. Focus your research on 
something you are trying out. Start by creating a question. Develop sub-questions that bring more detail or 
further focus your research. 

Compare school data of the pupil’s performance in English and how well they engage with work on language 
structure and regular expressions. 

Design, implement and evaluate a single lesson taught by different teachers. Explore how individual 
approaches impact on the central learning goals. 

How? Briefly tell the audience of different methods. Choose one of the examples from the suggestions 

above, or those raised in ‘Points To Ponder’ and discuss which methods might be used: 
Questionnaires (including online) and surveys, interviews, focus groups (and online forums, wikis), scrutiny 
of documents including pupils’ work and blogs, scrutiny of numerical data and observation are all common 
techniques. 

Less common but very effective might be analysis of professional conversations (in meetings, by email or via 
forums), analysis of pupil interactions/engagement in VLEs and forums, discourse analysis and content 
analysis. 

Remember – all research has ethical considerations. Remind attendees of a school’s requirements and 
permissions regarding information about pupils and parents, in particular the idea of informed consent and 
freedom to withdraw their data from the research process. Remind them that if they embark on a University 
course then they will be governed by their ethics policy. Similarly, if completing the BCS Certificate then 
there is an explicit ethical requirement. 

BCS Certificate in Computer Science Teaching 

End with a reminder of the BCS 
Certificate in Computer Science 
Teaching – ensure hand-outs are 
available. One part of the evidence for 
the award is classroom research 
undertaken by the teacher. The other 
two areas involve attending CPD – like 
today, and completing a manageable 
programming project. 

If that sounds a little daunting, remind teachers they can opt for either an independent or guided route. The 
latter means they have support from a mentor who can help guide them through the requirements. It is a 
valued award, giving professional recognition, accredited by the BCS, The Chartered Institute for IT. More 
importantly, it’s designed to help teachers in the work they are developing in school.  

Encourage teachers to seek support from their schools to gain accreditation. Ensure they raise it as part of 
the performance management cycle.  

More information is available at: http://www.computingatschool.org.uk/certificate. 

 

http://www.computingatschool.org.uk/certificate
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