
From Diagrams To Programs
Teacher Notes to support Tenderfoot Unit 5: Theoretical Computers – Fun with finite-state machines

CAS Tenderfoot

Kara is a programmable ladybird. This activity uses Kara as a vehicle for introducing programming and
alternative ways of thinking about algorithms.

Preparation required:
Kara available on class computers. Check to ensure security settings allow Java based applications.
Kara manual for each student as reference.

Finite-State Machines

This is a practical session looking at introducing programming through Finite State Machines. The application
we’ll use, Kara, was born in the research done by Raimond Reichert at ETH, Zurich (a leading STEM
University) in the years 1999-2003. He was looking at ways that theoretical computers could be used to
introduce the fundamental concepts of Computer Science and was an early advocate of making computer
science a part of general school education. He wrote, “Programming practiced as an educational exercise …
is best learned in a toy environment, designed to illustrate selected concepts in the simplest possible setting.
The fundamental concepts of programming may be intellectually demanding, but they are not complex in
the sense of requiring mastery of lots of details. Instead of using a programming language, we use a simpler
model … finite-state machines.” This approach has certain advantages. Reichert goes on to say, “It is easy to
represent them in a graphical manner. Paths of execution are defined statically as paths in a directed graph;
no other control structures are needed.” A program can be defined by creating a state diagram, and children
can quickly produce diagrams that can do fairly powerful things.

Introducing Kara

Kara, a Java application is free to download (goo.gl/OPZKor) and requires no
installation. It comes with a handy 7 page manual which you can distribute to
children. Both are included in the resources. The presentation is a practical
introduction designed to be followed by the class. When you run the
application, Kara’s world opens. It is a very simple world, consisting of a grid of
squares. Each square can have leaves, mushrooms or trees in them, but we start
by just placing Kara in her world (by dragging).

The Programming button opens a second window where pupils build their Finite
State Machine. It already has an end state in the diagram. Down the left hand
side are controls to let you create, edit and delete states. Create a new state,
named S1. The new state appears in your diagram. If you hover the mouse over
the state, with the MIDDLE highlighted, you can move it into the centre of the
diagram and make it the Start State, by selecting that option on the left.

With the mouse over the EDGE of the state, we can draw our transitions.
Initially, draw a line, back to itself, as shown. In the lower half of the window, the
transition has been recorded. Note the tab, which indicates which state we have
selected. Notice also the ‘Next State’, which indicates we remain in S1.

Look at the options on the left. These allow Kara to move forward, turn left and
right, pick up or put down an object. Add a move forward command to the
transition definition (simply drag it across). When executed Kara will move
forward one square, return to S1, move forward again, return to S1 and so on,
moving forward continually. We’ve written our first program, expressed as a
Finite State Machine, which implements a continuous loop.

http://goo.gl/OPZKor

2

There are only 3 constructs in programming: Sequence, Selection and Repetition.

We can make Kara’s world more exciting by adding a mushroom! Kara should
continue moving forward until she bumps into a mushroom. Then she should
stop. How might we express this in the FSM?

The discussion should draw out the need for a transition to the Stop state, but
also the need to test for a mushroom at S1. We need to add a sensor, the input
from which will determine which transition to take. With S1 selected, activate
the Edit State option and add a mushroom sensor.

When you return to the Programming window, notice how the sensor has been
added to the state definition. We can now set different actions in answer to the
condition by selecting the Yes or No option, and adding a second statement
moving Kara to the Stop state.

Thinking again about our programming constructs, we’ve now implemented an
IF statement, or selection. The state diagram will update and when the program
is executed Kara should stop at the mushroom.

The final part of the presentation adds a tree into Kara’s path. When Kara detects a tree, we want her to go
round it, before continuing on her way. Check the students can recount the steps involved:
• Edit S1
• Add a Tree sensor
• Assign the correct actions to each condition

With two sensors there are four possible combinations. In this case,
we don’t need to consider what would happen if Kara sensed both a
tree and a mushroom in front because only one element can be on
one square. However, students will need to consider all
combinations when trees are detected to the side, whilst
mushrooms are in front.

There are similar considerations with leaves, which are detected when they are underneath Kara. These are
encountered in the tasks, and can be linked to work with students developing truth tables. Notice here how
we have a sequence of actions triggered by a condition, the third of our key programming constructs.

Using the usual icon saves a finite-state machine as a file with a .kara extension. Note that it will not save the
world you have configured. To do that, you will need to use the same save icon in Kara’s world. These are
saved as files with a .world extension

Kara comes with a series of graded exercises built in. The drop down list
in Kara’s world reveals what is available.

The easy challenges should be accessible to KS3 children, whilst the
harder challenges provide plenty of scope for differentiation and
extension work.

As well as the explanation of the task, each challenge comes with
several preconfigured worlds to try your solution. Notice that a world
can be constrained to just a few tiles, rather than the whole grid.

Solutions and hints to the easy challenges are provided in the
resources but it is worth teachers trying to solve as many as possible
for themselves so they can appreciate any issues students will
encounter.

