
SWITCHEDON: www.computingatschool.org.uk 22

Suppose we want to design an inter-

active text editor. To begin with, let’s

concentrate on the functionality, so

we’re not concerned quite yet with

how to use or implement it. Looking at

lots of existing text editors to tease out

their common features, we observe

that they all provide the abilities to:

 open a new empty file;

 open an existing file;

 close a file;

 save a file;

 edit a file;

 exit the editor.

We also observe that:

 a file that isn’t open can’t be closed;

 a file that isn’t open can’t be saved;

 a closed file can’t be changed;

 a changed file can’t be closed be-

fore it’s been saved;

 the editor can’t be exited so long as

a changed file hasn’t been saved.

So a text editor can go through the

following stages or states:

 ready – waiting for a file to be

opened, or to exit the editor;

 open – waiting for an open file to

be changed or closed;

 changed – waiting for a changed

file to be altered further or to be

saved.

And then the editor will change from

one state to another depending on

what the user wants to do next.

A very useful way to capture the tran-

sitions between the states of a sys-

tem, without focussing on the low level

details of what happens between each

state, is with a state diagram. State

diagrams, which are closely related to

finite state machines, are also used

in many engineering disciplines, for

example to design control systems. In

Computing, state diagrams are a key

part of the Unified Modelling Lan-

guage (UML), and are also used to

design both GUIs and concurrent sys-

tems. Here, we’ll use the UML nota-

tion where a state is represented as a

labelled box and a transition between

two states is a directed arc labelled

with the cause of the transition (the

event) and what happens during the

transition (the action).

For example, a state machine for a

light switch might look like the diagram

below:

We can see that the light is in either a

state where it’s ON or a state where

it’s OFF. If the light is ON and the

switch is set to off, the bulb goes out

and the light enters the OFF state. If

the light is OFF and the switch set to

on, then the bulb goes on and the light

is in the ON state.

You could imagine turning this into a

GUI. The event of switching the light

on or off might involve toggling a but-

ton and the associated action might

be to change a label from, say, black

(off) to white (on) and vice versa.

If we abstract away from this diagram

we could use it as an outline design

for any system with two states and

transitions from each to the other.

So, let’s now consider our text editor.

The state diagram, showing the three

states, ready, open and changed is

shown in the box above right. Notice

that we’ve named each event with a

word. For example, we can consider

the event EDIT to be a short hand for

any change to the file.

In the second of a new regular series, Greg

Michaelson, Professor of Computer Science at

Herriot-Watt University in Edinburgh, illustrates

the value of state diagrams.

State diagrams are an

important way of describing what

computer systems can do. The last

issue of SWITCHEDON highlighted a

great way to introduce the concept;

exploring the curious properties of a

multi-sided hexahexaflexagon. A

booklet describing the activity, by

Teaching London Computing can be

downloaded from bit.ly/1mdPFAi. A

diagram of the transitions is a spe-

cial kind of graph that can be

thought of as a machine – a ‘finite

state machine’. The nodes of the

graph are different states the flexa-

gon can be in and the edges show

what actions that can be taken to

move between states. It describes

the computations involved in flex-

ing the flexagon.

Finite state machines (FSM) can

serve as a vehicle to illustrate one of

the core ideas of algorithms. Ma-

chines initiate actions based on their

current state and on received inputs.

As such, they offer another way to

introduce programming. Rather than

writing code, or assembling blocks of

commands, simple programs can be

expressed as diagrams.

Developed at ETH Zur-

ich, Kara the ladybird

lives in a world of

trees, leaves and

mushrooms. Children

work in an easy-to-

use environment with-

out having to deal

with the complexities of modern

programming interfaces. One goal

of the project was to ensure they

could have a working program ex-

pressed through a FSM within an

hour. A free download from

bit.ly/1JDS0cG Kara comes with ex-

ercises that range from simple to

very challenging. An excellent way

for children to begin to appreciate

that programing is but part of a much

deeper science. Roger Davies

Reprint from SWITCHEDON

Spring 2016. Download

from goo.gl/2giOMp

The MVC design pattern provides

a way of cleanly separating out

interface and behavioural con-

cerns. The Model consists of the

underlying data structures for the

problem domain, typically manipu-

lated via methods. The View is the

user interface. The Control medi-

ates and keeps track of the inter-

actions between the View and the

Model. For example, for our editor:

As the user interacts with the View,

the View interacts with the Control

(a), which in turn interacts with the

Model (b). The Models uses its

methods, manipulates information

in the data structures and returns

results via the Control (c) to the

View (d) for the user to see.

MVC was originally developed for

the early OO language Smalltalk.

Note there are now lots of different

and not necessarily consistent

takes on MVC. More about design

patterns in Java, including MVC in

the tutorial at bit.ly/1P6mCtx.

23 SWITCHEDON: www.computingatschool.org.uk

Think about the state diagram shown

above. Does it manage to capture

our intuitions about how our text edi-

tor should function?

Now, if we used this diagram as the

basis for the development of a

Graphical User Interface, we could

consider putting the labels NEW /

OPEN / CLOSE / SAVE / EXIT on

buttons or pull down menus.

We could also restrict the display

and only make an event option visi-

ble or enabled when its use is appro-

priate for the current state, that is

only when there’s an arc leading

from a state labelled with the word

for the event. Used in this fashion,

the state diagram is also telling us

how to control what the user can

legally do.

As an exercise, realise the text editor state diagram using your own choice of

interface, say a command line or a GUI. Choose something simple to indicate

the actions, for example displaying a message or changing a label when a state

changes, but without actually implementing any of the actual actions. Once the

interface behaves as you expect it to, implement the actions by developing ap-

propriate procedures or methods that can be called as a result of selecting

each event. Developing applications in this fashion allows the programmer to

separate the implementation of the interface from the processing required for

each action..

As another exercise, construct a state diagram that explains the operation of a

media player, with controls to open, play, pause and stop media, and to exit.

Then use the diagram to build an interface for the player.

Finally use your state diagram to construct an implementation of a slide show

player for images. Here, because the image sequence continues to play until

the user pauses or stops it, it’s helpful to think about MVC and how to introduce

interacting threads for each component.

A very nice thing about this ap-

proach is that we have separated out

three things:

 the legal sequences of transitions

– the state diagram;

 how each event is triggered by the

user – the interface;

 how each action is realised – the

implementation.

If we stick to our state diagram, we

can make changes to the interface

or the implementation independently

of each other, making the realisation

of the application much simple

This is reminiscent of the Model-

View-Control (MVC) design pattern,

articulated in the diagram (top right):

the state diagram is the control, the

interface is the view and the imple-

mentation is the model.

State Diagram Outlining the

Behaviour for a Text Editor

http://bit.ly/1mdPFAi
http://bit.ly/1JDS0cG
http://goo.gl/2giOMp
http://bit.ly/1P6mCtx

