
COMPUTING AT SCHOOL
E D U C AT E • E N G A G E • E N C O U R A G E

Computing
A CPD toolkit for primary teachers

FUNDED BY

September 2014 saw the introduction of the new
national curriculum in England and, for the first time,
schools must teach computing.

For most of us, technology and computers play a
vital role in our lives: at home, at work, for our health
and for our informal learning. It is important that
our children learn how this stuff works, rather than
treating it as magic. Just as we teach the traditional
sciences in primary school and into secondary school,
we must now teach computer science, the ‘fourth
science’, to ensure children leave school equipped
with the skills and knowledge they need to participate
effectively in society, whether or not they go on to
become computing professionals.

QuickStart Computing has been developed to support
schools with the new programme of study, by
providing you with the resources you will need to
successfully run your own computing CPD course for
colleagues in your school, cluster, or area. This pack
will give you the essential subject knowledge you
need, with a framework and guidance for planning,
teaching and assessing progress.

This QuickStart resource is focused on key stages 1
and 2, but there is a companion pack for KS 3 and 4.

A word about sponsorship. The QuickStart project
was funded by Microsoft, with matched funding from
the Department for Education, and it is heartening
to see such tangible support for teachers, both
from business and from government. I would like to
thank both of them warmly and to emphasise that
the QuickStart resources were developed for you by
a Computing At School working group, without the
direct influence of either sponsor.

The computing curriculum is a once-in-a-lifetime
opportunity for schools to make a difference to
children’s futures. Let’s make the most of it! I hope
that QuickStart will help you design, develop and
deliver an invigorating computing curriculum that will
inspire you and your children.

Foreword

Simon Peyton Jones
Chair, Computing At School

Every effort has been made to trace copyright holders and obtain
their permission for the use of copyright materials. The author and
publisher will gladly receive information enabling them to rectify any
error or omission in subsequent editions.

Although every effort has been made to ensure that website
addresses are correct at time of going to press, Computing At School
cannot be held responsible for the content of any website mentioned.
It is sometimes possible to find a relocated web page by typing in the
address of the home page for a website in the URL window of your
browser.

© Crown Copyright 2015
Published 2015

Author: Miles Berry
Consultants: Yvonne Walker, Graham Hastings
Cover, text design and typesetting: Burville Riley Partnership
CD developer: Alex Morris

Computing At School are grateful to the following contributors:
Bill Mitchell, Roger Davies, Michael Kölling, Hugh Milward,
Clare Riley, Phil Bagge, Mark Dorling, Andrea Carr, Becca Law,
Tracey Cowell, Sarah Snashall, Jane Jackson, Hilary Beaton,
Teresa Watts and Helen Royle from Stuck Ltd, Eruke Ideh-Ichofu.

Photo and text credits:
With thanks to Mark Dorling and Matthew Walker for permission to
use the Progression Pathways. © Mark Dorling and Matthew Walker.
Page 7: Barefoot would like to acknowledge the work of Julia Briggs
and the eLIM team at Somerset County Council for their contribution
to this poster.
Pages 11, 22, 24–28: Scratch is developed by the Lifelong Kindergarten
Group at the MIT Media Lab. See http://scratch.mit.edu.
Page 13 With thanks to iFixit. CC by-nc-sa.
Page 18, 20: With thanks to TTS.
Pages 21, 25 and 28: With thanks to Stuart Ball for providing the Kodu
screenshots.
Pages 33–37: With thanks to Advocate Art.
Page 39: Tim Berners-Lee image CC by Silvio Tanaka.
Page 41: PageRank example created by 345Kai. Public domain.
Pages 51, 53: Text from presentation ‘Inspecting Computing’ given by
David Brown HMI at Barefoot Computing Launch, July 2014. Crown
Copyright.
Page 52: Ofsted Handbook, September 2014. Crown Copyright.

To reference this work, please use the following citation: Berry, M.
(2015) QuickStart Primary Handbook. Swindon: BCS.

This content is free to use under the Open Government Licence v3.0.

A catalogue record for this title is available from the British Library.
ISBN: 978-1-78339-521-7

Printed by Newnorth Print, Ltd. Bedford

User guide	 4

QuickStart Computing roadmap	 5

Computational thinking	 6

Programming	 18

Technology	 30

Computer networks	 32

Communication and collaboration	 42

Productivity and creativity	 44

Safe and responsible use	 46

Planning guidance	 50

Teaching	 52

Assessment	 54

Running CPD sessions	 56
	 CPD Session 1	 57
	 CPD Session 2	 59

Next steps	 60

Resources	 61

Knowledge and skills audit form	 62

Glossary	 64

Contents

4

QuickStart Computing

User guide
Welcome to QuickStart Computing: a CPD toolkit for the
new primary curriculum. Computing is a new subject.
It draws together the strands of computer science,
information technology and digital literacy, and seeks to
equip children with computational thinking skills and the
creativity they need to understand and change the world.

Through the programme of study for computing, primary
school-aged children learn the fundamental principles and
processes of computation; they gain repeated, practical
experience of writing code to solve problems and to model
systems; they also become skilled at creating high quality
products and content using digital technology; and they
become safe, responsible and critical users of technology.1
Computing is an enjoyable and empowering subject to learn,
and it’s a very rewarding one to teach. However, unlike
other subjects in the primary curriculum, it’s not one many
primary teachers learned themselves when they were at
school, or were taught about in their teacher training.

Quickstart Computing is a set of resources that address
the subject knowledge and the subject-specific pedagogy
teachers need in order to plan, teach and assess the primary
computing curriculum effectively and confidently.

This handbook is broken down into three sections:
•• Computing subject knowledge with suggestions for

tried-and-tested classroom activities to run in school
(see pages 6–49)

•• Advice for planning, teaching and assessing the
computing curriculum (see pages 50–55)

•• Guidance for running computing CPD sessions (see
pages 56–59).

All three sections are supported by:

a selection of videos to explain particular
computing concepts and ideas; the video content
is highlighted at the start of each subject
knowledge section

weblinks to useful information, including activity
ideas from Computing At School, Barefoot
Computing and CS Unplugged.

All the resources are available to download free of charge
from www.quickstartcomputing.org.

Delivering computing CPD
This toolkit can be used to develop and deliver computing
CPD sessions to colleagues and computing coordinators.
We have suggested a model for the use of this CPD on the
page opposite but you can decide how best to share the
training to meet the needs of your school, cluster or hub.

All timings and durations are suggestions only and should
be adapted to fit with the needs of both the course leader
and session attendees. For example, the diagram opposite
outlines two half-day CPD sessions to take place at the
beginning and end of a school term, but depending on
availability of session leaders and attendees, it may be
better to hold three shorter twilight sessions.

These resources are designed to be used flexibly and it is
important to spend time reviewing the materials provided and
developing these prior to delivering CPD sessions, to ensure
they fit the needs of your attendees. The CPD session
presentations are provided in editable format to help you
with this.

Developing computing knowledge
and skills
To benefit most from these resources, it’s important to
engage fully with them.

•• Read the handbook, particularly those areas of
content in which you are less confident (see pages
62–63 for the knowledge and skills audit form, and the
interactive audit tool is at www.quickstartcomputing.
org).

•• Have a go at creating some code, for example making
games in Scratch or Kodu; think about how you would
apply these ideas in school.

•• Look for existing examples of computational thinking
that you make use of in your job.

•• Try out some of the classroom activities described in
the handbook.

•• Engage with others. Learning as part of a group allows
you to share knowledge and ideas. This can be done
in school and by joining an online community such as
Computing At School: www.computingatschool.org.uk/.

For more information about developing your computing
knowledge and skills beyond this toolkit, see Next steps
on page 60.

Note: throughout the guide we have highlighted
computing terms in blue. The definitions of these terms
are in the glossary on page 64.

What is QuickStart Computing?

1 National Curriculum in England, Computing Programmes of Study
(Department for Education, 2013).

http://www.quickstartcomputing.org
http://www.quickstartcomputing.org
http://www.quickstartcomputing.org
http://www.computingatschool.org.uk/

1

Wave 1

Wave 2

Local computing champion
Computing
coordinator Class teacher

1

School School

School
CAS hub / local

cluster lead
CAS hub / local

cluster lead

CPD Session 1

Local computing champion introduces

Computing course to computing

coordinators at local meeting.

Computing coordinators lead face-

to-face CPD concept sessions in

school with colleagues.

Computing coordinators use the

CPD resources to develop personal

knowledge and practise teaching

activities in classroom.

Class teachers use the CPD

resources to develop personal

knowledge and practise teaching

activities in classroom.

Computing coordinators re-group

at local meeting for a de-brief on

learning experiences and discuss

next steps.

Class teachers re-group in staff

meeting for a de-brief on learning

experiences and discuss next steps.

Personal learning time
+

Classroom teaching time

Personal learning time
+

Classroom teaching time

CPD Session 1

CPD Session 2

CPD Session 2

School

2

+ Online

Online+

+

+

+

+

++

+ +

2

3

3

QuickStart Computing
roadmap

5

6

QuickStart Computing

How do we think
about problems
so that computers
can help?

Computers are incredible devices: they extend
what we can do with our brains. With them, we can
do things faster, keep track of vast amounts of
information and share our ideas with other people.

Getting computers to help us to solve problems is a
two-step process:

1.	 First, we think about the steps needed to solve a
problem.

2.	 Then, we use our technical skills to get the
computer working on the problem.

Take something as simple as using a calculator to
solve a word problem in maths. First, you have to
understand and interpret the problem before the
calculator can help out with the arithmetic bit.

Similarly, if you’re going to make an animation, you
need to start by planning the story and how you’ll
shoot it before you can use computer hardware and
software to help you get the work done.

In both of these examples, the thinking that is
undertaken before starting work on a computer is
known as computational thinking.

Computational thinking describes the processes
and approaches we draw on when thinking about
problems or systems in such a way that a computer
can help us with these.

Computational thinking is not thinking about
computers or like computers. Computers don’t think
for themselves. Not yet, at least!

Computational thinking is about looking at a problem
in a way that a computer can help us to solve it.

When we do computational thinking, we use the
following processes to tackle a problem:

⚫⚫ Logical reasoning: predicting and analysing
(see pages 8–10)

⚫⚫ Algorithms: making steps and rules (see pages
10–12)

⚫⚫ Decomposition: breaking down into parts
(see pages 12–14)

⚫⚫ Abstraction: removing unnecessary detail
(see pages 14–15)

⚫⚫ Patterns and generalisation: spotting and using
similarities (see pages 15–16)

⚫⚫ Evaluation: making judgements

Although computational thinking describes the sort
of thinking that computer scientists and software
developers engage in, plenty of other people think
in this way too, and not just when it comes to using

Computational
thinking

Introducing algorithms

Logical reasoning

What is computational
thinking?

What can you do with
computational thinking?

7

Computational thinking

computers. The thinking processes and approaches
that help with computing are really useful in many
other domains too.

For example, the way a team of software engineers
go about creating a new computer game, video editor
or social networking platform is really not that
different from how you and your colleagues might
work together to put on a school play, or to organise
an educational visit.

In each case:

⚫⚫ you take a complex problem and break it down
into smaller problems

⚫⚫ it’s necessary to work out the steps or rules for
getting things done

⚫⚫ the complexity of the task needs to be managed,
typically by focusing on the key details

⚫⚫ the way previous projects have been
accomplished can help.

Ideas like logical reasoning, step-by-step approaches
(algorithms), decomposition, abstraction and
generalisation have wide applications to solving
problems and understanding systems across (and
beyond) the school curriculum. There are many ways
to develop these in school beyond the computing

curriculum, but as pupils learn to use these in their
computing work, you should find that they become
better at applying them to other work too.

You will already use computational thinking in many
different ways across your school.

⚫⚫ When your pupils write stories, you encourage
them to plan first: to think about the main events
and identify the settings and the characters.

⚫⚫ In art, music or design and technology, you will
ask pupils to think about what they are going to
create and how they will work through the steps
necessary for this, by breaking down a complex
process into a number of planned phases.

⚫⚫ In maths, pupils will identify the key information
in a problem before they go on to solve it.

The national curriculum for computing puts
computational thinking right at the heart of its
ambition. It states:

A high-quality computing education equips pupils
to use computational thinking and creativity to
understand and change the world.1

How is computational thinking
used in the curriculum?

Where does computational
thinking fit in the new
computing curriculum?

1 National Curriculum in England, Computing Programmes of Study
(Department for Education, 2013).

8

QuickStart Computing

Whilst programming (see pages 18–29) is an important
part of the new curriculum, it would be wrong to
see this as an end in itself. Rather, it’s through the
practical experience of programming that the insights of
computational thinking can best be developed.

Computational thinking shouldn’t be seen as just a
new name for ‘problem-solving skills’. It does help to
solve problems and it has wide applications across
other disciplines, but it’s most obviously apparent, and
probably most effectively learned, through the rigorous,
creative processes of writing code – as discussed in the
next section.

 Classroom activity ideas

⚫⚫ Ask your pupils to write a recipe for a sandwich,
thinking carefully about each step that needs
to be carried out. Point out that the step-by-
step sequence of instructions is an algorithm.
Ask them to share each other’s recipes and spot
patterns in them (this is called generalisation).
Read a range of recipes and discuss the layers
of simplification (abstraction) present in even
relatively simple recipes, such as for pizza.

⚫⚫ Plan a traditional ‘design, make and evaluate’
project for design and technology, drawing out
the parallels with computational thinking. For
example, plan the process for making a musical
instrument. Tell the pupils to break this complex
problem down into smaller stages, such as:

»» planning their design (an abstraction – a simplified
version – capturing the key elements of this)

»» sourcing their materials (using decomposition
to identify the different components)

»» assembling the materials to create the
instrument (a systematic, step-by-step
approach – an algorithm)

»» evaluating (testing) the instrument.
⚫⚫ Challenge older pupils to work individually or
collaboratively on more complex projects, for
example researching and writing up aspects of a
curriculum topic such as the Viking invasion, or
putting together an assembly or a class play. In
each case ask them to note down the individual
steps needed for the task and to think about what
they have left out to make the subject fit their brief.

 Further resources

⚫⚫ Barefoot Computing, ‘Computational Thinking’,
available at: http://barefootcas.org.uk/barefoot-
primary-computing-resources/concepts/
computational-thinking/ (free, but registration
required).

⚫⚫ Berry, M., ‘Computational Thinking in Primary
Schools’ (2014), available at: http://milesberry.
net/2014/03/computational-thinking-in-primary-
schools/.

⚫⚫ Computer Science Teachers Association,
‘CSTA Computational Thinking Task Force’ and
‘Computational Thinking Resources’, available
at: http://csta.acm.org/Curriculum/sub/
CompThinking.html.

⚫⚫ Computing At School, ‘Computational
Thinking’, available at: http://community.
computingatschool.org.uk/resources/252.

⚫⚫ Curzon, P., Dorling, M., Ng, T., Selby, C. and
Woollard, J., ‘Developing Computational Thinking
in the Classroom: A Framework’ (Computing At
School, 2014), available at: http://community.
computingatschool.org.uk/files/3517/original.pdf.

⚫⚫ Google for Education, ‘Exploring Computational
Thinking’, available at: www.google.com/edu/
computational-thinking/index.html.

⚫⚫ Wing, J., ‘Computational Thinking and Thinking
about Computing’ (The Royal Society, 2008),
available at: http://rsta.royalsocietypublishing.
org/content/366/1881/3717.full.pdf+html.

Logical reasoning

If you set up two computers in the same way, give them
the same instructions (the program) and the same
input, you can pretty much guarantee the same output.

Computers don’t make things up as they go along
or work differently depending on how they happen
to be feeling at the time. This means that they
are predictable. Because of this we can use logical
reasoning to work out exactly what a program or
computer system will do.

Children quickly pick this up for themselves: the
experience of watching others and experimenting

Can you explain why
something happens?

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/
http://csta.acm.org/Curriculum/sub/CompThinking.html
http://csta.acm.org/Curriculum/sub/CompThinking.html
http://community.computingatschool.org.uk/resources/252
http://community.computingatschool.org.uk/resources/252
http://community.computingatschool.org.uk/files/3517/original.pdf
http://community.computingatschool.org.uk/files/3517/original.pdf
www.google.com/edu/computational-thinking/index.html
www.google.com/edu/computational-thinking/index.html
http://rsta.royalsocietypublishing.org/content/366/1881/3717.full.pdf+html
http://rsta.royalsocietypublishing.org/content/366/1881/3717.full.pdf+html

9

Computational thinking

for themselves allows even very young children to
develop a mental model of how technology works. A
child learns that clicking the big round button brings
up a list of different games to play, or that tapping
here or stroking there on the screen produces a
reliably predictable response.

This process of using existing knowledge of a
system to make reliable predictions about its future
behaviour is one part of logical reasoning. At its
heart, logical reasoning is about being able to explain
why something is the way it is. It’s also a way to
work out why something isn’t quite as it should be.

Logic is fundamental to how computers work: deep
inside the computer’s central processing unit (CPU),
every operation the computer performs is reduced to
logical operations carried out using electrical signals.

It’s because everything a computer does is
controlled by logic that we can use logic to reason
about program behaviour.

Software engineers use logical reasoning all the
time in their work. They draw on their internal
mental models of how computer hardware, the
operating system (such as Windows 8, OS X) and
the programming language they’re using all work,
in order to develop new code that will work as they
intend. They’ll also rely on logical reasoning when
testing new software and when searching for and
fixing the ‘bugs’ (mistakes) in their thinking (known
as debugging – see page 17) or their coding when
these tests fail.

There are many ways that children will already use
logical reasoning in their computing lessons and
across the wider curriculum.

⚫⚫ In English, pupils might explain what they think
a character will do next in a novel, or explain the
character’s actions in the story so far.

⚫⚫ In science, pupils should explain how they have
arrived at their conclusions from the results of
their experiments.

⚫⚫ In history, pupils should discuss the logical
connections between cause and effect; they
should understand how historical knowledge is
constructed from a variety of sources.

In the computing curriculum, key stage 1 pupils are
expected to use logical reasoning to predict the
behaviour of simple programs. This can include the
ones they themselves write, perhaps with a floor
turtle, or simple movement commands on screen
in a program like Scratch, but it might also include
predicting what happens when they play a computer
game, or use a painting program.

At key stage 2, pupils are expected to ‘use logical
reasoning to explain how some simple algorithms
work and to detect and correct errors in algorithms
and programs’.2

 Classroom activity ideas

⚫⚫ Provide pupils with floor turtles and ask them to
make predictions of where the robot will end up
when the go button is pressed. Then ask them
to explain why they think that. Being able to give
a reason for their thinking is what using logical
reasoning is all about.

⚫⚫ In their own coding, logical reasoning is key to
debugging (finding and fixing the mistakes in
their programs). Ask the pupils to look at one
another’s Scratch or Kodu programs and spot
bugs. Encourage them to test the programs to
see if they can isolate exactly which bit of code
is causing a problem. If pupils’ programs fail to
work, get them to explain their code to a friend
or even an inanimate object (e.g. a rubber duck).

⚫⚫ Give pupils a program of your own or from the
Scratch or Kodu community sites and ask them to
work backwards from the code to work out what
it will do.

⚫⚫ Ask pupils to think carefully about some school
rules, for example those in the school’s computer

How is logical reasoning used
across the curriculum?

How is logical reasoning
used in computing?

Where does logical
reasoning fit in the new
computing curriculum?

2 National Curriculum in England, Computing Programmes of Study
(Department for Education, 2013).

10

QuickStart Computing

Acceptable Use Policy. Can they use logical
reasoning to explain why the rules are as they are?

⚫⚫ There are many games, both computer-based
and more traditional, that draw directly on the
ability to make logical predictions. Organise for
the pupils to play noughts and crosses using
pencil and paper. As they are playing, ask them
to predict their opponent’s next move. Let them
play computer games such as Minesweeper,
Angry Birds or SimCity, as appropriate. Ask them
to pause at certain points and tell you what they
think will happen when they move next. Consider
starting a chess club if your school doesn’t
already have one.

 Further resources

⚫⚫ Barefoot Computing, ‘Logic: Predicting and
Analysing’, available at: http://barefootcas.org.
uk/barefoot-primary-computing-resources/
concepts/logic/ (free, registration required).

⚫⚫ Computer Science for Fun, ‘The Magic of
Computer Science’, available at: www.cs4fn.org/
magic/.

⚫⚫ Computer Science Unplugged, ‘Databases
Unplugged’, available at: http://csunplugged.org/
databases.

⚫⚫ McOwan, P. and Curzon, P. (Queen Mary University
of London), with support from EPSRC and Google,
‘Computer Science Activities With a Sense of Fun’,
available at: www.cs4fn.org/teachers/activities/
braininabag/braininabag.pdf.

⚫⚫ The P4C Co-operative, a co-operative providing
resources and advice on philosophy for children,
available at: www.p4c.com/.

⚫⚫ PhiloComp.net, website highlighting the strong
links between philosophy and computing, available
at www.philocomp.net/.

Algorithms

An algorithm is a sequence of instructions or a set of
rules to get something done.

You probably know the fastest route from school
to home, for example, turn left, drive for five miles,

turn right. You can think of this as an ‘algorithm’
– as a sequence of instructions to get you to your
chosen destination. There are plenty of algorithms
(i.e. routes) that will accomplish the same goal; in
this case, there are even algorithms (such as in your
satnav) for working out the shortest or fastest
route.

Search engines such as Bing or Google use
algorithms to put a set of search results into order,
so that more often than not, the result we’re looking
for is at the top of the front page.

Your Facebook news feed is derived from your
friends’ status updates and other activity, but it only
shows that activity which the algorithm (EdgeRank)
thinks you’ll be most interested in seeing. The
recommendations you get from Amazon, Netflix and
eBay are algorithmically generated, based in part on
what other people are interested in.

Given the extent to which so much of their lives is
affected by algorithms, it’s worth pupils having some
grasp of what an algorithm is.

Helping pupils to get an idea of what an algorithm
is needn’t be confined to computing lessons. You
and your pupils will already use algorithms in many
different ways across the school.

⚫⚫ A lesson plan can be regarded as an algorithm for
teaching a lesson.

⚫⚫ There will be a sequence of steps pupils follow for
many activities, such as getting ready for lunch or
going to PE.

⚫⚫ In cookery, we can think of a recipe as an
algorithm.

⚫⚫ In English, we can think of instructional writing as
a form of algorithm.

⚫⚫ In science, we might talk about the method of an
experiment as an algorithm.

⚫⚫ In maths, your approach to mental arithmetic (or
many computer-based educational games) might
be an implementation of a simple algorithm.

How are algorithms used
in the real world?

How are algorithms used
across the curriculum?

What’s the best way to
solve a problem?

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/logic/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/logic/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/logic/
www.cs4fn.org/magic/
www.cs4fn.org/magic/
http://csunplugged.org/databases
http://csunplugged.org/databases
www.cs4fn.org/teachers/activities/braininabag/braininabag.pdf
www.cs4fn.org/teachers/activities/braininabag/braininabag.pdf
www.p4c.com/
www.philocomp.net/

11

Computational thinking

Where do algorithms fit
in the new computing
curriculum?

An example of this might be:
»» repeat ten times:

»» ask a question
»» wait for a response
»» provide feedback on whether the response

was right or wrong.

The computing curriculum expects pupils in key
stage 1 to have an understanding of what algorithms
are, and how they are used in programs on digital
devices.

There can be many algorithms to solve the same
problem, and each of these can be implemented
using different programming languages on different
computer systems: it can be useful for pupils to
compare how they draw a square with a floor turtle
and how they would do this on screen in Logo or
ScratchJr.

Scratch Jnr programming for drawing a square.

Key stage 2 builds on this: pupils are expected to
design programs with particular goals in mind, which
will draw on their being able to think algorithmically,
as well as using logical reasoning (see pages 8–10)
to explain algorithms and to detect and correct
errors in them. To practise this, encourage pupils to
carry out the steps for an algorithm: to follow the
instructions themselves rather than writing these
as code for the computer. Errors and inconsistencies
should become apparent!

Whilst programming languages like Scratch and Kodu
(see pages 21–22) can make it seem unnecessary to

go through the planning stage of writing a program,
it is good practice for pupils to write down the
algorithm for a program, perhaps as rough jottings,
a storyboard, pseudocode (a written description
of how a program will operate) or even as a flow
chart (see below). This makes it far easier for them
to get feedback from you or their peers on their
algorithms before implementing these as code on
their computers.

Repeat 10 times:

	 Ask a maths question

	 If the answer is right then:

		 Say well done!

	 Else:

		 Say think again!

An example of pseudocode.

An example of a flow chart.

 Classroom activity ideas

⚫⚫ Talk to the pupils about what makes one
algorithm better than another. In early
programming work, pupils will come to realise
that a Bee-Bot program which uses fewer steps
than another to get to the same place is quicker
to type and quicker to run.

⚫⚫ Play the classroom game ‘Guess my number’ to
demonstrate this. Tell the pupils that you have

Ask a question

Say ‘that’s right’

Say ‘that’s
wrong’

No

Yes

Pupil
responds

Start

Is the
answer

correct?

12

QuickStart Computing

chosen a number between 1 and 100 and they are
to guess what it is. Tell them that they can ask
you questions about the number but that you can
only answer ‘yes’ or ‘no’, and that they can only
ask you one question per pupil.

»» For the first go, ask the pupils to guess
numbers randomly.

»» Next, using a new number, ask the pupils to
guess the number sequentially from one, e.g. ‘Is
the number one?’ and so on. Explain that this
is called a linear search. Allow them to have as
many goes as needed to guess the number.

»» Finally, using a new number again, explain how
to use a binary search. Explain to the learners
that they already know the number is less than
100, so suggest they ask, ‘Is it less that 50?’
then, ‘Is it less than 25?’ or ‘Is it less than 75?’
depending on the answer. Tell the pupils to
keep halving the section they are searching in
until the number is found.

»» Afterwards, talk about which approach found
the number quicker. When they are familiar
with using a binary search method, replay the
game using a number between 1 and 1000.

⚫⚫ Organise the pupils to sort a set of unknown
weights into weight order using a simple pan
balance, thinking carefully about the algorithm
they’re following to do this, and then to think of a
quicker way to accomplish the same activity. See
http://csunplugged.org/sorting-algorithms for a
demonstration of this.

⚫⚫ Explain to the pupils that not all algorithms are
made of sequences of instructions: some are rule
based. Introduce rule-based algorithms by writing a
number sequence on the board, e.g. 3, 6, 9, 12 or
2, 4, 8, 16. Ask the pupils to work out the rule for the
sequence (adding 3, or doubling the number) and to
predict the next number. Explain that the rule for the
sequence is the algorithm and the process by which
they worked it out was logical reasoning.

 Further resources

⚫⚫ Bagge, P., ‘Flow Charts in Primary Computing
Science’, available at: http://philbagge.blogspot.
co.uk/2014/04/flow-charts-in-primary-
computing-science.html.

⚫⚫ Barefoot Computing, ‘KS2 Logical Number
Sequences Activity’, available at: http://
barefootcas.org.uk/programme-of-study/use-
logical-reasoning-explain-simple-algorithms-
work/ks2-logical-number-sequences-activity/
(free, but registration required).

⚫⚫ Cormen, T., ‘Algorithms Unlocked’ (MIT Press,
2013).

⚫⚫ Peyton Jones, S. and Goldberg, A. (Microsoft
Research), ‘Getting from A to B: Fast Route-
Finding Using Slow Computers’, available at: www.
ukuug.org/events/agm2010/ShortestPath.pdf.

⚫⚫ Slavin, K., ‘How Algorithms Shape Our World’,
available at: www.ted.com/talks/kevin_slavin_
how_algorithms_shape_our_world?language=en.

⚫⚫ Steiner, C., ‘Automate This: How Algorithms Came
to Rule Our World’ (Portfolio Penguin, 2013).

Decomposition

The process of breaking down a problem into smaller
manageable parts is known as decomposition.
Decomposition helps us solve complex problems and
manage large projects.

This approach has many advantages. It makes the
process a manageable and achievable one – large
problems are daunting, but a set of smaller, related
tasks are much easier to take on. It also means that
the task can be tackled by a team working together,
each bringing their own insights, experience and
skills to the task.

Decomposing problems into their smaller parts is
not unique to computing: it’s pretty standard in
engineering, design and project management.

Software development is a complex process, and
so being able to break down a large project into
its component parts is essential – think of all the
different elements that need to be combined to
produce a program, like PowerPoint.

The same is true of computer hardware: a
smartphone or a laptop computer is itself
composed of many components, often produced
independently by specialist manufacturers and
assembled to make the finished product, each

How do I solve a problem by
breaking it into smaller parts?

How is decomposition
used in the real world?

http://csunplugged.org/sorting-algorithms
http://philbagge.blogspot.co.uk/2014/04/flow-charts-in-primary-computing-science.html
http://philbagge.blogspot.co.uk/2014/04/flow-charts-in-primary-computing-science.html
http://philbagge.blogspot.co.uk/2014/04/flow-charts-in-primary-computing-science.html
http://barefootcas.org.uk/programme-of-study/use-logical-reasoning-explain-simple-algorithms-work/ks2-logical-number-sequences-activity/
http://barefootcas.org.uk/programme-of-study/use-logical-reasoning-explain-simple-algorithms-work/ks2-logical-number-sequences-activity/
http://barefootcas.org.uk/programme-of-study/use-logical-reasoning-explain-simple-algorithms-work/ks2-logical-number-sequences-activity/
http://barefootcas.org.uk/programme-of-study/use-logical-reasoning-explain-simple-algorithms-work/ks2-logical-number-sequences-activity/
http://www.ukuug.org/events/agm2010/ShortestPath.pdf
http://www.ukuug.org/events/agm2010/ShortestPath.pdf
www.ted.com/talks/kevin_slavin_how_algorithms_shape_our_world?language=en
www.ted.com/talks/kevin_slavin_how_algorithms_shape_our_world?language=en

13

Computational thinking

under the control of the operating system and
applications.

A tablet can be broken down (decomposed) into smaller components.
With thanks to iFixit.com

You’ll have used decomposition to tackle big projects
at school, just as programmers do in the software
industry.

⚫⚫ Delivering your school’s curriculum: typically
this would be decomposed as years and subjects,
further decomposed into terms, units of work
and individual lessons or activities. Notice how
the project is tackled by a team working together
(your colleagues), and how important it is for the
parts to integrate properly.

⚫⚫ Putting on a school play, organising a school trip
or arranging a school fair.

A task such as organising a school trip can be decomposed into
smaller chunks.

You and your pupils will already use decomposition in
many different ways across the curriculum.

⚫⚫ In science or geography, labelling diagrams
to show the different parts of a plant, or the
different nations which make up the UK.

⚫⚫ In English, planning the different parts of a story.
⚫⚫ In general project planning, planning a research
project for any subject or working collaboratively
to deliver a group presentation. Technology can
help with this sort of collaborative group work, or
can even be a focus for it, and great collaborative
tools are available in Office 365 and other ‘cloud’-
based software.

⚫⚫ In maths, breaking down a problem to solve it.

The computing curriculum expects that key stage 2
pupils learn to ‘solve problems by decomposing
them into smaller parts’3; it also expects pupils to
design and create a range of systems with particular
goals in mind (here, system implies something with a
number of interconnected components).

As pupils plan their programs or systems, encourage
them to use decomposition: to work out what the
different parts of the program or system must do,
and to think about how these are inter-related.
For example, a simple educational game is going to
need some way of generating questions, a way to
check if the answer is right, some mechanism for
recording progress such as a score and some sort of
user interface, which in turn might include graphics,
animation, interactivity and sound effects.

Plan opportunities for pupils to get some experience
of working as a collaborative team on a software
development project, and indeed other projects
in computing. This could be media work such as
animations or videos, shared online content such as
a wiki, or a challenging programming project such as
making a computer game or even a mobile phone app.

How is decomposition
used in school?

How is decomposition used
across the curriculum?

Consent
letters

Staffing

Book
coach

Check
weather Resources

TRIP TO
FARM

3 National Curriculum in England, Computing Programmes of Study
(Department for Education, 2013).

Where does decomposition
fit in the new computing
curriculum?

14

QuickStart Computing

 Classroom activity ideas

⚫⚫ Organise for the pupils to tackle a large-
scale programming project, such as making a
computer game, through decomposition. Even
for a relatively simple game the project would
typically be decomposed as follows: planning,
design, algorithms, coding, animation, graphics,
sound, debugging and sharing. A project like this
would lend itself to a collaborative, team-based
approach, with development planned over a
number of weeks.

⚫⚫ Take the case off an old desktop computer and
show the pupils how computers are made from
systems of smaller components connected
together. Depending on the components involved,
some of these can be disassembled further
still, although it’s likely to be better to look at
illustrations of the internal architecture of such
components.

⚫⚫ Organise for the pupils to carry out a
collaborative project online, for example through
developing a multi-page wiki site. For example,
pupils could take the broad topic of e-safety,
decompose this into smaller parts and then work
collaboratively to develop pages for their wiki,
exploring each individual topic. The process of
writing these pages can be further decomposed,
through planning, research, drafting, reviewing
and publishing phases.

 Further resources

⚫⚫ Apps for Good, available at: www.appsforgood.
org/.

⚫⚫ Barefoot Computing, ‘Decomposition’, available
at: http://barefootcas.org.uk/sample-resources/
decomposition/ (free, but registration required).

⚫⚫ Basecamp (professional project management
software) can be used by teachers with their
class (free), available at: https://basecamp.com/
teachers.

⚫⚫ Gadget Teardowns, available at: www.ifixit.com/
Teardown.

⚫⚫ NRICH, ‘Planning a School Trip’, available at:
http://nrich.maths.org/6969.

⚫⚫ Project Management Institute Educational
Foundation, ‘Project Management Toolkit for
Youth’, available at: http://pmief.org/learning-
resources/learning-resources-library/project-
management-toolkit-for-youth.

Abstraction

For American computer scientist Jeanette Wing,
credited with coining the term, abstraction lies at
the heart of computational thinking:

The abstraction process – deciding what details
we need to highlight and what details we can
ignore – underlies computational thinking.4

Abstraction is about simplifying things; identifying
what is important without worrying too much
about the detail. Abstraction allows us to manage
complexity.

We use abstractions to manage the complexity of
life in schools. For example, the school timetable is
an abstraction of what happens in a typical week: it
captures key information such as who is taught what
subject where and by whom, but leaves to one side
further layers of complexity, such as the learning
objectives and activities planned in any individual lesson.

Abstraction is such a powerful way of thinking
about systems and problems that it seems worth
introducing pupils to this whilst they’re still at
primary school. This doesn’t have to be just in
computing lessons.

⚫⚫ In maths, working with ‘word problems’ often
involves a process of identifying the key
information and establishing how to represent
the problem in the more abstract language of
arithmetic, algebra or geometry.

⚫⚫ In geography, pupils can be helped to see a
map as an abstraction of the complexity of the
environment, with maps of different scales
providing some sense of the layered nature of
abstraction in computing.

⚫⚫ In history, pupils are taught world history
or national history as an abstraction of the
detail present in local histories and individual
biographies, which are themselves abstractions
of actual events.

How do you manage
complexity?

How is abstraction used
across the curriculum?

4 ‘Computational thinking and thinking about computing’
(The Royal Society, 2008).

www.appsforgood.org/
www.appsforgood.org/
http://barefootcas.org.uk/sample-resources/decomposition/
http://barefootcas.org.uk/sample-resources/decomposition/
https://basecamp.com/teachers
https://basecamp.com/teachers
www.ifixit.com/Teardown
www.ifixit.com/Teardown
http://nrich.maths.org/6969
http://pmief.org/learning-resources/learning-resources-library/project-management-toolkit-for-youth
http://pmief.org/learning-resources/learning-resources-library/project-management-toolkit-for-youth
http://pmief.org/learning-resources/learning-resources-library/project-management-toolkit-for-youth

15

Computational thinking

⚫⚫ In music, the piano score of a pop song might be
thought of as an abstraction for that piece of
music.

The national curriculum for computing leaves
abstraction until key stage 3, although it is part of
the overarching aims of the subject, which seeks to
ensure that all pupils:

can understand and apply the fundamental
principles and concepts of computer science,
including abstraction, logic, algorithms and data
representation.5

In computing lessons, pupils can learn about the
process of abstraction from playing computer games,
particularly those that involve interactive simulations
of real world systems (see Classroom activity ideas).
Encourage pupils’ curiosity about how things work,
helping them to think about what happens inside the
computer or on the internet as they use software or
browse the web.

When pupils put together a presentation or video
on a topic they know about, they’ll need to focus on
the key information, and think about how this can be
represented, whilst leaving to one side much of the
detail of the subject: this too involves abstraction.

 Classroom activity ideas

⚫⚫ Encourage pupils who are learning to program
to create their own games. If these are based on
real world systems then they’ll need to use some
abstraction to manage the complexity of that
system in their game. In a simple table tennis
game, e.g. Pong, the simulation includes the ball’s
motion in two dimensions and how it bounces
off the bat, but it ignores factors such as air
resistance, spin or even gravity. Ask your pupils
to think really carefully about what detail they
need to include, and what can be left out when
programming a similar game.

 Further resources

⚫⚫ Barefoot Computing, ‘Abstraction’, available at:
http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/abstraction/
(free, but registration required).

⚫⚫ BBC Bitesize, ‘Abstraction’, available at: www.
bbc.co.uk/education/guides/zttrcdm/revision.

⚫⚫ BBC Cracking the Code, ‘Simulating the
Experience of F1 Racing Through Realistic
Computer Models’, available at: www.bbc.co.uk/
programmes/p016612j.

⚫⚫ Google for Education, ‘Solving Problems at Google
Using Computational Thinking’, available at: www.
youtube.com/watch?v=SVVB5RQfYxk.

⚫⚫ ‘The Art of Abstraction – Computerphile’,
available at: www.youtube.com/
watch?v=p7nGcY73epw.

Patterns and
generalisation

In computing, the method of looking for a general
approach to a class of problems is called generalisation.
By identifying patterns we can make predictions, create
rules and solve more general problems. For example,
in learning about area, pupils could find the area of a
particular rectangle by counting the centimetre squares
on the grid on which it’s drawn. But a better solution
would be to multiply the length by the width: not only
is this quicker, it’s also a method that will work on all
rectangles, including really small ones and really large
ones. Although it takes a while for pupils to understand
this formula, once they do it’s so much faster than
counting squares.

Pupils are likely to encounter the idea of generalising
patterns in many areas of the primary curriculum.5 National Curriculum in England, Computing Programmes of Study

(Department for Education, 2013).

Where does abstraction
fit in the new computing
curriculum?

How can you make things
easier for yourself?

How are patterns and
generalisation used in the
national curriculum?

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/abstraction/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/abstraction/
www.bbc.co.uk/education/guides/zttrcdm/revision
www.bbc.co.uk/education/guides/zttrcdm/revision
www.bbc.co.uk/programmes/p016612j
www.bbc.co.uk/programmes/p016612j
www.youtube.com/watch?v=SVVB5RQfYxk
www.youtube.com/watch?v=SVVB5RQfYxk
www.youtube.com/watch?v=p7nGcY73epw
www.youtube.com/watch?v=p7nGcY73epw

16

QuickStart Computing

⚫⚫ From an early age, they’ll become familiar
with repeated phrases in nursery rhymes and
stories; later on they’ll notice repeated narrative
structures in traditional tales or other genres.

⚫⚫ In music, children will learn to recognise repeating
melodies or bass lines in many musical forms.

⚫⚫ In maths, pupils typically undertake investigations
in which they spot patterns and deduce
generalised results.

⚫⚫ In English, pupils might notice common rules for
spellings, and their exceptions.

 Classroom activity ideas

⚫⚫ In computing, encourage pupils to always look
for simpler or quicker ways to solve a problem or
achieve a result. Ask pupils to explore geometric
patterns using turtle graphics commands in
languages like Scratch, Logo or TouchDevelop
to create ‘crystal flowers’ (see pages 26–27).
Emphasise how the use of repeating blocks
of code is much more efficient than writing
each command separately, and allow pupils to
experiment with how changing one or two of
the numbers used in their program can produce
different shapes.

⚫⚫ Organise for the pupils to use graphics software
to create tessellating patterns to cover the
screen. As they do this, ask them to find quicker
ways of completing the pattern, typically by
copying and pasting groups of individual shapes.

⚫⚫ Help the pupils to create rhythmic and effective
music compositions using simple sequencing
software in which patterns of beats are repeated.

⚫⚫ Ask the pupils to experiment with number
patterns and sequences using Scratch or other
programming languages. Can they work out a
general program which they could use to generate
any linear number sequence?

 Further resources

⚫⚫ Barefoot Computing, ‘Patterns’, available at:
http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/patterns/
(free, but registration required).

⚫⚫ Isle of Tune app, available at: http://isleoftune.com.
⚫⚫ Laurillard, D., Teaching as a Design Science: Building
Pedagogical Patterns for Learning and Technology
(Routledge, 2012).

⚫⚫ Pattern in Islamic art, available at:
www.patterninislamicart.com.

⚫⚫ M. C. Escher website, available at:
www.mcescher.com.

How does software
get written?
As well as the above processes, there are also a
number of approaches that characterise computational
thinking. If pupils are to start thinking computationally,
then it’s worth helping them to develop these
approaches to their work, so they can be more effective
in putting their thoughts into action.

Tinkering
There is often a willingness to experiment and
explore in computer scientists’ work. Some elements
of learning a new programming language or exploring
a new system look quite similar to the sort of
purposeful play that’s seen as such an effective
approach to learning in the best nursery and
reception classrooms.

Open source software makes it easy to take
someone else’s code, look at how it’s been made
and then adapt it to your own particular project
or purpose. Platforms such as Scratch and
TouchDevelop positively encourage users to look at
other programmers’ work and use this as a basis for
their own creative coding.

In class, encourage pupils to play with a new piece of
software, sharing what they discover about it with
one another, rather than you explaining exactly how
it works. Also, look for ways in which pupils can use
others’ code, from you, their peers, or online, as a
starting point for their own programming projects.

Creating
Programming is a creative process. Creative work
involves both originality and making something of
value: typically something that is useful or at least
fit for the purpose intended.

Encourage pupils to approach tasks with a creative
spirit, and look for programming tasks that allow
some scope for creative expression rather than
merely arriving at the right answer.

Encourage pupils to reflect on the quality of the
work they produce, critiquing their own and others’
projects. The process of always looking for ways to

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/patterns/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/patterns/
http://isleoftune.com
www.patterninislamicart.com
www.mcescher.com

17

Computational thinking

improve on a software project is becoming common
practice in software development. Look for projects
in which artistic creativity is emphasised, such as
working with digital music, images, animation, virtual
environments or even 3D printing.

Debugging
Because of its complexity, the code programmers
write often doesn’t work as it’s intended.

Getting pupils to take responsibility for thinking
through their algorithms and code, to identify and
fix errors is an important part of learning to think,
and work, like a programmer. It’s also something to
encourage across the curriculum: get pupils to check
through their working in maths, or to proofread their
stories in English. Ask pupils to debug one another’s
code (or indeed proofread one another’s work),
looking for mistakes and suggesting improvements.
There’s evidence that learning from mistakes is a
particularly effective approach, and the process of
pupils debugging their own or others’ code is one way
to do this. Keep an eye on the bugs that your pupils do
encounter, as these can sometimes reveal particular
misconceptions that you may need to address (see
pages 28–29).

Persevering
Computer programming is hard. This is part of
its appeal – writing elegant and effective code
is an intellectual challenge requiring not only
an understanding of the ideas of the algorithms
being coded and the programming language you’re
working in, but also a willingness to persevere with
something that’s often quite difficult and sometimes
very frustrating. Carol Dweck’s work on ‘growth
mind-sets’ suggests that hard work and a willingness
to persevere in the face of difficulties can be key
factors in educational outcomes. Encourage pupils
to look for strategies they can use when they do
encounter difficulties with their programming work,
such as working out exactly what the problem is,
searching for the solution on Bing or Google (with
the safe search mode locked), KidRex or Swiggle, or
asking a friend for help.

Collaborating
Software is developed by teams of programmers and
others working together on a shared project. Look
for ways to provide pupils with this experience in
computing lessons too. Collaborative group work has
long had a place in primary education, and computing
should be no different.

Many see ‘pair programming’ as a particularly
effective development method, with two
programmers sharing a screen and a keyboard,
working together to write software. Typically one
programmer acts as the driver, dealing with the
detail of the programming, whilst the other takes
on a navigator role, looking at the bigger picture.
The two programmers regularly swap roles, so both
have a grasp of both detail and big picture. Working
in a larger group develops a number of additional
skills, with each pupil contributing some of their own
particular talents to a shared project. However, it’s
important to remember that all pupils should develop
their understanding of each part of the process,
so some sharing of roles or peer-tutoring ought
normally to be incorporated into such activities.

 Further resources

⚫⚫ Barefoot Computing, ‘Computational Thinking
Approaches’, available at: http://barefootcas.
org.uk/barefoot-primary-computing-resources/
computational-thinking-approaches/ (free, but
registration required).

⚫⚫ Briggs, J., ‘Programming with Scratch Software:
The Benefits for Year Six Learners’ (Bath Spa
MA dissertation, 2013), available at: https://
slp.somerset.gov.uk/cypd/elim/somersetict/
Computing_Curriculum_Primary/Planning/MA_
JBriggs_Oct2013.pdf.

⚫⚫ DevArt: Art Made with Code, available at: https://
devart.withgoogle.com/.

⚫⚫ Dweck, C., ‘Mindset: How You Can Fulfil Your
Potential’ (Robinson, 2012).

⚫⚫ Education Endowment Foundation toolkit,
available at: http://
educationendowmentfoundation.org.uk/toolkit/.

⚫⚫ Papert, S. and Harel, I., ‘Situating
Constructionism’ (Ablex Publishing Corporation,
1991), available at: www.papert.org/articles/
SituatingConstructionism.html.

http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/
https://slp.somerset.gov.uk/cypd/elim/somersetict/Computing_Curriculum_Primary/Planning/MA_JBriggs_Oct2013.pdf
https://slp.somerset.gov.uk/cypd/elim/somersetict/Computing_Curriculum_Primary/Planning/MA_JBriggs_Oct2013.pdf
https://slp.somerset.gov.uk/cypd/elim/somersetict/Computing_Curriculum_Primary/Planning/MA_JBriggs_Oct2013.pdf
https://slp.somerset.gov.uk/cypd/elim/somersetict/Computing_Curriculum_Primary/Planning/MA_JBriggs_Oct2013.pdf
https://devart.withgoogle.com/
https://devart.withgoogle.com/
http://educationendowmentfoundation.org.uk/toolkit/
http://educationendowmentfoundation.org.uk/toolkit/
www.papert.org/articles/SituatingConstructionism.html
www.papert.org/articles/SituatingConstructionism.html

18

QuickStart Computing

Programming

What is
programming?

Programming is the process of designing and writing
a set of instructions (a program) for a computer in a
language it can understand.

This can be really simple, such as the program to
make a robot toy trace out a square; or it can be
incredibly sophisticated, such as the software used
to forecast the weather or to generate a set of
ranked search results.

Programming is a two-step process.

•• First, you need to analyse the problem or system
and design a solution. This process will use
logical reasoning, decomposition, abstraction
and generalisation (see pages 6–17) to design
algorithms to solve the problem or model the
system.

•• Secondly, you need to express these ideas in a
particular programming language on a computer.
This is called coding, and we can refer to the
set of instructions that make up the program as
‘code’.

Programming provides the motivation for learning
computer science – there’s a great sense of
achievement when a computer does just what you
ask it, because you’ve written the precise set of
instructions necessary to make something happen.
Programming also provides the opportunity to test
out ideas and get immediate feedback on whether
something works or not.

It’s possible to teach computational thinking
without coding and vice versa, but the two seem to
work best hand-in-hand.

Teaching computational thinking without giving
pupils the opportunity to try out their ideas as
code on a computer is like teaching science without
doing any experiments. Similarly, teaching coding
without helping pupils to understand the underlying
processes of computational thinking is like doing
experiments in science without any attempt to teach
pupils the principles which underpin them.

This is reflected in the new computing curriculum,
which states that pupils should not only know
the principles of information and computation,
but should also be able to put this knowledge to
use through programming. One of the aims of the
national curriculum for computing is that pupils can
analyse problems in computational terms, and have
repeated practical experience of writing computer
programs in order to solve problems.

In key stage 1, pupils should be taught how simple
algorithms are implemented as programs on digital
devices. The phrase ‘digital devices’ encompasses
tablets, laptop computers,
programmable toys, and perhaps
also distant web servers. It can be
useful for pupils to be able to see
their algorithms, in whatever way
they’ve recorded these, and their
code side by side.

What should programming
be like in schools?

Children can use simple arrow
cards to record algorithms for
programmable toys.

Introduction to
programming

19

Programming

Pupils also should have the opportunity to create
and debug (see pages 28–29) their own programs, as
well as predicting what a program will do.

In key stage 2, pupils should be taught to design and
write programs that accomplish specific goals, which
should include controlling or simulating physical
systems, for example making and programming a
Lego robot. They should be taught to use sequence,
selection and repetition in their programs (see
pages 24–27), as well as variables to store data.
They should also learn to use logical reasoning to
detect and fix the errors in their programs.

 Classroom activity ideas

•• There are simple activities on the Barefoot
Computing website; see Further Resources below.

•• Here are some ideas for extended programming
projects:
»» Year 2: solve a maze using a floor/screen turtle
»» Year 3: create a simple animation
»» Year 4: create a question and answer maths game
»» Year 5: create more complex computer games
»» Year 6: develop a simple app for a tablet or

smartphone.

 Further resources

•• Barefoot on ‘Programming’, available at:
http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/programming/
(free, but registration required).

•• BBC Bitesize: Controlling physical systems,
available at: www.bbc.co.uk/guides/zxjsfg8.

•• BBC Cracking the Code, for examples of source
code for complex software systems such as robot
footballers and a racing car simulator, available
at: www.bbc.co.uk/programmes/p01661pj.

•• CAS Chair, Prof Simon Peyton Jones’ explanation
of some of the computer science that forms
the basis for the computing curriculum:
http://community.computingatschool.org.uk/
resources/2936.

•• Code.org for activities and resources, available at:
http://code.org/educate.

•• Rushkoff, D., Program or be Programmed: Ten
Commands for a Digital Age (OR Books, 2010).

How do you program
a computer?
Programming a computer involves writing code.
The code is the set of instructions for the computer
written in a programming language that the
computer understands. In fact, the programming
languages we use are a halfway house – they’re
written in a language we can understand which then
gets translated by the computer into the ‘machine
code’ of instructions that can be run directly on the
silicon chips which control it.

Programs comprise precise, unambiguous instructions
– there’s no room for interpretation or debate about
the meaning of a particular line of computer code.
We can only write code using the clearly defined
vocabulary and grammar of the programming
language, but typically these are words taken from
English, so code is something that people can write
and understand, but the computer can also follow.

There are many languages to choose from. The
majority are more complex than necessary for those
just getting to grips with the ideas of programming,
but there are plenty of simple, well supported
languages that can be used very effectively in the
primary classroom. Try to pick a language that you’ll
find easy to learn, or better still, know already.

Consider these points when choosing a programming
language:

•• Not all languages run on all computer systems.
•• Choose a language that is suitable for your pupils.
There are computer languages that are readily
accessible to primary pupils – in most cases this
will mean one that has been written with pupils in
mind, or at least adapted to make it easier to learn.

•• Choose a language supported by a good range of
learning resources. It’s better still if it has online
support communities available, both for those
who are teaching the language and those who are
learning it.

•• It is beneficial to the pupils if they can continue
working in the language on their home computer,
or, even better, if they can easily continue work
on the same project via the internet.

What programming
languages should you use?

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/
www.bbc.co.uk/guides/zxjsfg8
www.bbc.co.uk/programmes/p01661pj
http://community.computingatschool.org.uk/resources/2936
http://community.computingatschool.org.uk/resources/2936
http://code.org/educate

20

QuickStart Computing

There’s a view that some languages are better at
developing good programming ‘habits’ than others.
Good teaching, in which computational thinking is
emphasised alongside coding, should help to prevent
pupils developing bad coding habits at this stage.

The table below illustrates a progressive approach to
programming languages in a primary setting.

Whilst there’s much to be said for letting pupils
explore several programming languages, it’s
important that they develop a degree of fluency in
one, fairly general-purpose language, so that this
becomes a medium in which they can solve problems,
get useful things done and work creatively.

 Further resources

⚫⚫ Iry’s ‘brief, incomplete and mostly wrong history
of programming languages’: http://james-iry.blog-
spot.mx/2009/05/brief-incomplete-and-mostly-
wrong.html.

•• Utting, I., Cooper, S., Kolling, M., Maloney, J. and
Resnick, M., (2010) ‘Alice, Greenfoot, and Scratch
– A Discussion’, available at: http://kar.kent.
ac.uk/30617/2/2010-11-TOCE-discussion.pdf.

⚫⚫ Wikipedia list of ‘Hello, world!’ in many
programming languages, available at:
http://en.wikipedia.org/wiki/List_of_Hello_
world_program_examples.

How do you program
a floor turtle?
Programming in Early Years and key stage 1 is
much more likely to involve working with simple
programmable toys than using computers.
It’s much easier for pupils to learn the idea of
programming when working with a really simple
language and interface, and for them to plan and
check their programs when they can, quite literally,
put themselves in the place of the device they’re
programming.

A programmable floor turtle, such as the Bee-
Bot or Roamer-Too, is ideal for this. The Bee-Bot
programming language consists of five commands:
forward, back, turn left, turn right and pause.
Programming a Bee-Bot is simply a process of
pressing buttons in the desired order to build a
sequence of commands, with new commands being
added to the end of the sequence.

This simple device can be used as a basis for many
engaging activities, both for early programming and
across the curriculum. Younger pupils will often work
with the Bee-Bot one instruction at a time, whilst
older children will become adept at creating longer
sequences of instructions.

A number of tablet or smartphone apps and web-
based tools are based on the idea of device-specific
languages like these. These are often in the form
of a game with a sequence of progressively harder
levels in which players create ever more complex
sequences of instructions to solve challenges. For
example: Bee-Bot, LightbotTM, A.L.E.X and Cargo-Bot.

One approach for scaffolding the transition from
floor turtle programming to programming on screen
is to use an on-screen simulation of a Bee-Bot: it’s
relatively easy to make (or adapt) one yourself in
Scratch 2.0.

Which language is right
for which key stage?

Key stage Language type Language See

Early
Years/KS1 Device-specific

Bee-Bot Page 20

Roamer-Too Page 20

KS1 Limited
instruction

ScratchJr Page 22

LightbotTM Pages 20–21

KS2

Game
programming Kodu Pages 21, 22,

25 and 28

Block-based Scratch Pages 21–22,
24–28

Text-based
Logo Pages 22,

26–27, 29

TouchDevelop Page 23

Moves the
Bee-Bot forward
through its own
body length

Turns the
Bee-Bot 90°
anti-clockwise

Moves the Bee-
Bot backwards
through its own
body length

Turns the Bee-Bot
90° clockwiseAllows stored

program to run

Clears the Bee-
Bot memory

http://james-iry.blogspot.mx/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.mx/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.mx/2009/05/brief-incomplete-and-mostly-wrong.html
http://kar.kent.ac.uk/30617/2/2010-11-TOCE-discussion.pdf
http://kar.kent.ac.uk/30617/2/2010-11-TOCE-discussion.pdf
http://en.wikipedia.org/wiki/List_of_Hello_world_program_examples
http://en.wikipedia.org/wiki/List_of_Hello_world_program_examples

21

Programming

 Classroom activity ideas

•• Allow very young pupils to play with a floor
turtle, tinkering with it so they can develop their
own sense of the relationship between pressing
buttons and running their program.

•• Encourage pupils to plan a sequence of instructions
for a particular objective, such as getting the floor
turtle from one ‘flower’ to another. Ask pupils
to predict what will happen when they run their
program, and to explain their thinking (logical
reasoning).

•• For more complex challenges, provide pupils with
the code for a floor turtle’s route from one place
to another, including an error in the code. Ask the
pupils to work out where the bug is in the code and
then fix this, before testing out their code on the
floor turtle.

 Further resources

•• BBC on how to program a robot, available at:
www.bbc.co.uk/learningzone/clips/programming-
robots/4391.html.

•• Bee-Bots are available from TTS. Other
programmable toys include Roamer-Too (by
Valiant) and Pro-Bot (by TTS).

•• Barefoot on ‘KS1 Bee-Bots, 1, 2, 3 Programming
Activity’, available at: http://barefootcas.org.
uk/barefoot-primary-computing-resources/
concepts/programming/ks1-bee-bots-12-3-
programming-activity/ (free, but registration
required).

•• Bee-Bot and Roamer-Too simulator activities,
available at: http://scratch.mit.edu/
projects/19799927/.

•• LightbotTM, available at: http://lightbot.com/.

How do you program
things to move
around the screen?
There are a number of graphical programming
toolkits available: these make learning to code easier
than ever. In most of these, programs are developed
by dragging or selecting blocks or icons which
represent particular instructions in the programming
language. These can normally only fit together in

ways that make sense, and the amount of typing, and
thus the potential for spelling or punctuation errors,
is kept to an absolute minimum.

With toolkits like these it’s easy to experiment
with creating code. By letting the programmer
focus on the ideas of their algorithm rather than
the particular vocabulary and grammar of the
programming language, learning to program
becomes easier and often needs less teacher input.

Kodu
Microsoft’s Kodu is a rich, graphical toolkit for
developing simple, interactive 3D games.

Each object in the Kodu game world can have its own
program. These programs are ‘event driven’: they are
made up of sets of ‘when [this happens], do [that]’
conditions, so that particular actions are triggered
when certain things happen, such as a key being
pressed, one object hitting another, or the score
reaching a certain level.

Kodu interface.

Programmers can share their games with others in
the Kodu community, which facilitates informal and
independent learning. There’s also plenty of scope
for pupils to download and modify games developed
by others, which many find quite an effective way to
learn the craft of programming. This can also offer
pupils a sense of creating games with an audience
and purpose in mind.

Scratch
In MIT’s Scratch, the programmer can create
their own graphical objects, including the stage
background on which the action of a Scratch
program happens, and a number of moving objects,
or sprites, such as the characters in an animation or
game.

www.bbc.co.uk/learningzone/clips/programming-robots/4391.html
www.bbc.co.uk/learningzone/clips/programming-robots/4391.html
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/ks1-bee-bots-12-3-programming-activity/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/ks1-bee-bots-12-3-programming-activity/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/ks1-bee-bots-12-3-programming-activity/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/ks1-bee-bots-12-3-programming-activity/
http://scratch.mit.edu/projects/19799927/
http://scratch.mit.edu/projects/19799927/
http://lightbot.com/

22

QuickStart Computing

Screenshot of a Scratch program.

Each object can have one or more scripts, built up
using the building blocks of the Scratch language. To
program an object in Scratch, you drag the colour-
coded block you want from the different palettes
of blocks and snap this into place with other blocks
to form a script. Scripts can run in parallel with one
another or be triggered by particular events, as in
Kodu.

A number of other projects use Scratch as a starting
point for their own platforms, for example ScratchJr
is an iPad app designed for young programmers
(key stage 1) and Berkeley’s Snap! allows even more
complex programming ideas (such as functions) to
be explored through the same sort of building block
interface.

There’s a great online community for Scratch
developers to download and share projects globally,
making it easier for pupils to pursue programming in
Scratch far beyond what’s needed for the national
curriculum. There’s also a supportive educator
community, which has developed and shared high
quality curriculum materials.

Scratch is available as a free web-based editor or as
a standalone desktop application. Files can be moved
between online and offline versions.

 Classroom activity ideas

•• Pupils could develop a game in Kodu, taking
inspiration from some of the games on the Kodu
community site. As a starting point, tell them to
create a game in which Kodu (the player’s avatar
in the game) is guided around the landscape
bumping into (or shooting) enemies.

•• Ask your pupils to create a simple scripted
animation in Scratch, perhaps with a couple of
programmed characters who take turns to act out
a story. Designing the algorithm for a program like
this is very similar to storyboarding in video work.

 Further resources

•• Armoni, M. and Ben-Ari, M., ‘Computer science
concepts in Scratch’, available at: http://stwww.
weizmann.ac.il/g-cs/scratch/scratch_en.html.

•• Berry, M., ‘Scratch across the curriculum’,
available at: http://milesberry.net/2012/06/
scratch-across-the-curriculum/.

•• Creative Computing, ‘An Introductory Computing
Curriculum Using Scratch’, available at: http://
scratched.gse.harvard.edu/guide/.

•• Kelly, J., Kodu for Kids (Que Publishing, 2013).
•• Kinect2Scratch, to program Microsoft Kinect with
Scratch, available at: http://scratch.saorog.com/.

•• Kodu Game Lab Community, available at:
www.kodugamelab.com/.

•• Other graphical programming environments for
education include Espresso Coding, 2Code from
2Simple and J2Code.

•• Scratch, available at http://scratch.mit.edu/.
•• ScratchEd online community for educators,
available at: http://scratch.mit.edu/educators/.

•• ScratchJr: www.scratchjr.org/.
•• Snap!, available at: http://snap.berkeley.edu/.

What is real
programming?
Most software development in academia and industry
takes place using text-based languages, where
programs are constructed by typing the commands
from the programming language at a keyboard.

Historically, text-based programming has been a
real barrier for children when learning to code, and
there’s no need to rush into text-based programming
as part of the primary curriculum. It is, however,
worth considering text-based programming for
an extra-curricular programming club or even in
class, if you or your colleagues feel confident with
this. Possible text-based programming languages
for primary schools could include Logo and
TouchDevelop.

http://stwww.weizmann.ac.il/g-cs/scratch/scratch_en.html
http://stwww.weizmann.ac.il/g-cs/scratch/scratch_en.html
http://milesberry.net/2012/06/scratch-across-the-curriculum/
http://milesberry.net/2012/06/scratch-across-the-curriculum/
http://scratched.gse.harvard.edu/guide/
http://scratched.gse.harvard.edu/guide/
http://scratch.saorog.com/
www.kodugamelab.com/
http://scratch.mit.edu/
http://scratch.mit.edu/educators/
www.scratchjr.org/
http://snap.berkeley.edu/

23

Programming

Logo
Logo was developed by Seymour Papert and others
at MIT as an introductory programming language
for children. It’s probably best known for its use of
‘turtle graphics’ – an approach to creating images
in which a ‘turtle’ (either a robot or a representation
on screen) is given instructions for drawing a shape,
such as:

REPEAT 4 [
	 FORWARD 100
	 RIGHT 90]

Papert saw Logo as a tool for children to think
with, just as programming is both the means to and
motivation for computational thinking.

In Logo programming, more complex programs are
built up by ‘teaching’ the computer new words.
These are called procedures. For example: defining
a procedure to draw a square of a certain size
using the key words of the language. Once you have
defined the procedure ‘square’, typing it in will then
result in the turtle drawing a square. For example:

TO SQUARE :SIDE
	 REPEAT 4 [
		 FORWARD :SIDE
		 RIGHT 90]
	 END
SQUARE 50

TouchDevelop
Typing code on a tablet computer or a smartphone
is not easy, and this can be problematic for schools
that use these devices extensively.

Developed by Microsoft Research, TouchDevelop is
a programming language and environment, which
takes into account both the challenges posed and
the opportunities offered by touch-based interfaces
such as those on tablets and smartphones.

TouchDevelop makes it quite easy to develop an app
for a smartphone or tablet on the smartphone or
tablet itself.

Although TouchDevelop is a text-based language,
programmes aren’t typed but are created by
choosing commands from the options displayed
in a menu system. In this way, TouchDevelop is a
halfway house between graphical and text-based
programming.

As with Logo, turtle graphics commands are available
as standard. On many platforms TouchDevelop can
also access some of the additional hardware built into
the device, such as the accelerometer or GPS location,
allowing more complex apps to be developed: these can
be hosted online as web-based apps or installed directly
on the device if it’s a Windows phone.

Program to draw a square using a turtle.

A particularly nice feature of TouchDevelop is
the use of interactive tutorials to scaffold pupils’
learning of the language.

 Classroom activity ideas

•• Revisit the turtle graphics activities you might
have been using for programming in the past.

•• Explore how different programming languages
can be used to simulate dice being rolled. First,
ask pupils to think about how they would do that
in Scratch. Then, challenge your pupils to create
an app in TouchDevelop which simulates rolling
a dice when the phone or tablet is shaken, or
when the screen is tapped. Ask pupils to think
about how deterministic computers can simulate
random events such as these.

 Further resources

•• Archived lesson plan from DfES for creating crystal
flowers: http://webarchive.nationalarchives.gov.
uk/20090608182316/http://standards.dfes.gov.uk/
pdf/primaryschemes/itx4e.pdf.

•• Horspool, N. and Ball, T., TouchDevelop:
Programming on the Go (APress, 2013), available
at: www.touchdevelop.com/docs/book.

•• Logo, available at: www.calormen.com/jslogo/ and
elsewhere.

•• Papert, S., Mindstorms: Children, Computers, and
Powerful Ideas (Basic Books Inc., 1980), available
at: http://dl.acm.org/citation.cfm?id=1095592.

•• TouchDevelop interactive tutorials for Hour of
CodeTM: www.touchdevelop.com/hourofcode2.

•• TouchDevelop from Microsoft Research: www.
touchdevelop.com/.

http://webarchive.nationalarchives.gov.uk/20090608182316/http://standards.dfes.gov.uk/pdf/primaryschemes/itx4e.pdf
http://webarchive.nationalarchives.gov.uk/20090608182316/http://standards.dfes.gov.uk/pdf/primaryschemes/itx4e.pdf
http://webarchive.nationalarchives.gov.uk/20090608182316/http://standards.dfes.gov.uk/pdf/primaryschemes/itx4e.pdf
www.touchdevelop.com/docs/book
www.calormen.com/jslogo/
http://dl.acm.org/citation.cfm?id=1095592
www.touchdevelop.com/hourofcode2
www.touchdevelop.com/
www.touchdevelop.com/

24

QuickStart Computing

What’s inside
a program?
Whilst the detail will vary from one language to
another, there are some common structures and
ideas which programmers use over and over again
from one language to another and from one problem
to another:

•• Sequence: running instructions in order (see
below and page 25)

•• Selection: running one set of instructions or another,
depending on what happens (see pages 25–26)

•• Repetition: running some instructions several
times (see pages 26–27)

•• Variables: a way of storing and retrieving data
from the computer’s memory (see pages 27–28).

These are so useful that it’s important to make sure
all pupils learn these.

This Scratch script shows sequence, selection,
repetition and variables. Can you work out which bit
is which
before
we look
at these
ideas in
detail?

 Further resources

•• BBC Bitesize programming tutorial ‘How do we
get computers to do what we want?’ (covering
sequence, selection and repetition), available at:
www.bbc.co.uk/guides/z23q7ty.

•• Cracking the Code clip, available at: www.bbc.
co.uk/programmes/p016j4g5.

•• Scratch multiplication test, available at: http://
scratch.mit.edu/projects/26116842/#editor.

Sequence
Programs are built up of sequences of instructions.
When pupils start programming with floor turtles,
their programs consist entirely of sequences of
instructions, built up as the stored sequence of

button presses for what the floor turtle should do.
As with any program, these instructions are precise
and unambiguous, and the floor turtle will simply take
each instruction (the stored button presses) and turn
that into signals for the motors driving its wheels.

Initially, pupils might type in just one instruction at
a time, clearing the memory after each, but as they
become more experienced as programmers, or want
to solve a problem more quickly, sequences become
more complex.

Forward
Forward
Forward
Turn left
Forward
Forward

Pupils’ first Scratch programs are also likely to
be made up of simple sequences of instructions.
Again, these need to be precise and unambiguous,
and of course
the order of the
instructions
matters. In
developing their
algorithms, pupils
will have had to
work out exactly
what order to put
the steps in to
complete a task.

A program that children
might create in Scratch.

 Classroom activity ideas

•• Give pupils progressively more complex problems
to solve with a floor turtle, asking them first
to plan their algorithm for solving these before
creating single programs on the floor turtle.

•• Provide pupils with existing projects from Scratch
(see Further resources on page 26). Allowing them
to remix these projects by changing the code and
seeing how this affects the program is a useful
learning experience.

•• Ask pupils to design, plan and code scripted
animations in Scratch, perhaps using a timeline
or storyboard to work out their algorithm before
converting this into instructions for sprites in
Scratch.

www.bbc.co.uk/guides/z23q7ty
www.bbc.co.uk/programmes/p016j4g5
www.bbc.co.uk/programmes/p016j4g5
http://scratch.mit.edu/projects/26116842/#editor
http://scratch.mit.edu/projects/26116842/#editor

25

Programming

 Further resources

•• Animation 14: UK Schools Computer Animation
Competition (key stage 2), available at:
http://animation14.cs.manchester.ac.uk/gallery/
winners/KS2/.

•• Barefoot on ‘Sequence’, available at: http://
barefootcas.org.uk/barefoot-primary-computing-
resources/concepts/programming/sequence/
(free, but registration required).

•• Cracking the Code clip on programming a robotic
toy car: www.bbc.co.uk/programmes/p01661yg.

•• Viking invasion animation in Scratch from
Barefoot Computing (for upper KS2), available at:
http://barefootcas.org.uk/programme-of-study/
use-sequence-in-programs/upper-ks2-viking-
raid-animation-activity/ (free, but registration
required).

Selection
Selection is the programming structure through
which a computer executes one or other set of
instructions according to whether a particular
condition is met or not. This ability to do different
things depending on what happens in the computer
as the program is run or out in the real world lies
at the heart of what makes programming such a
powerful tool.

Selection is an important part of creating a game in
Kodu. An object’s behaviour in a game is determined
by a set of conditions, for example: WHEN the
left arrow is pressed, the object will move left.
Similarly, interaction with other objects, variables
and environments in Kodu are programmed as a set
of WHEN … DO … conditions. For example, WHEN I
bump the apple DO eat it AND add 2 points to score.

In Scratch (and other programming languages) you
can build selection into a sequence of instructions,
allowing the computer to run different instructions
depending on whether a condition is met.

Examples of how selection can be used to start a script in Scratch.

At the core of many educational games is a simple
selection command: if the answer is right then give
a reward, else say the answer is wrong. See the
Scratch script for the times tables game on page 24.

It’s also worth noting that selection statements
can be nested inside one another. This allows more
complex sets of conditions to be used to determine
what happens in a program. Look at the way some
if blocks are inside others in the following script
to model a clock in Scratch. The script also uses
repetition and three variables for the seconds,
minutes and hours of the time:

 Classroom activity ideas

•• Encourage pupils to explore the different
conditions which the character in Kodu can
respond to in its event-driven programming. Get
pupils to think creatively about how they might
use these when developing a game of their own.
Give them time to design their game, thinking
carefully about the algorithm, i.e. the rules,
they’re using.

http://animation14.cs.manchester.ac.uk/gallery/winners/KS2/
http://animation14.cs.manchester.ac.uk/gallery/winners/KS2/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/sequence/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/sequence/
http://www.bbc.co.uk/programmes/p01661yg
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/

26

QuickStart Computing

•• Ask pupils to design simple question and answer
games in Scratch. Encourage them to first think
about the overall algorithm for their game before
coding this and then working to develop the user
interface, making this more engaging than just a
cat asking lots of questions. It’s helpful if pupils
have a target audience in mind for software
like this.

 Further resources

•• Barefoot Computing on ‘Selection’, available at:
http://barefootcas.org.uk/programme-of-study/
use-selection-programs/selection/ (free, but
registration required).

•• Papert, S., ‘Does Easy Do It? Children, Games, and
Learning’, available at: www.papert.org/articles/
Doeseasydoit.html.

Scratch projects to remix
•• Analogue clock by mgberry on Scratch, available at:
http://scratch.mit.edu/projects/28742256/#editor.

•• Addition race by mgberry on Scratch, available at:
http://scratch.mit.edu/projects/15905989/#editor.

Repetition
Repetition in programming means to repeat the
execution of certain instructions. This can make a
long sequence of instructions much shorter, and
typically easier to understand.

Using repetition in programming usually involves
spotting that some of the instructions you want the
computer to follow are the same, or very similar,
and therefore draws on the computational thinking
process of pattern recognition/generalisation (see
pages 15–16). You’ll sometimes hear the repeating
block of code referred to as a loop, i.e. the computer
keeps looping through the commands one at a time
as they’re executed (carried out).

Think about the Bee-Bot program for a square
(forward, left, forward, left,
forward, left, forward, left). Notice how
for each side we move forward and then turn left. On
a Roamer-Too or a Pro-Bot, you could use the repeat
command to simplify the coding for this by using the
built in repeat command, replacing this code with,
for example, repeat 4 [forward, left].

The same would apply in Logo, from which the
Roamer-Too and Pro-Bot programming device-
specific languages are derived.

Compare:

FORWARD 100
LEFT 120
FORWARD 100
LEFT 120
FORWARD 100
LEFT 120

with:

REPEAT 3 [
 FORWARD 100
 LEFT 120]

Both programs draw equilateral triangles. Using
repetition reduces the amount of typing and makes
the program reflect the underlying algorithm more
clearly.

In the examples above, the repeated code is run
a fixed number of times, which is the best way to
introduce the idea. You can also repeat code forever.
This can be useful in real world systems, such as
a control program for a digital thermostat, which
would continually check the temperature of a room,
sending a signal to turn the heating on when this
dropped below a certain value. This is a common
technique in game programming. For example,
the following Scratch code would make a sprite
continually chase another around the screen:

Repetition can be combined with selection, so that
a repeating block of code is run as many times as
necessary until a certain condition is met, as in this
fragment in Scratch:

You can nest one repeating block inside another. The
‘crystal flower’ programs in Logo use this idea. For
example:

REPEAT 6 [
 	 REPEAT 5 [
 		 FORWARD 100
 		 LEFT 72]
 	 LEFT 60]

http://barefootcas.org.uk/programme-of-study/use-selection-programs/selection/
http://barefootcas.org.uk/programme-of-study/use-selection-programs/selection/
www.papert.org/articles/Doeseasydoit.html
www.papert.org/articles/Doeseasydoit.html
http://scratch.mit.edu/projects/28742256/
http://scratch.mit.edu/projects/15905989/#editor

27

Programming

draws:

 Classroom activity ideas

•• Ask pupils to use simple repetition commands to
produce a ‘fish tank’ animation in Scratch, with
a number of different sprites each running their
own set of repeating motion instructions. This
can be made more complex by including some
selection commands to change the behaviour of
sprites as they touch one another.

•• Encourage pupils to experiment with ‘crystal
flower’ programs in Scratch, Logo or other
languages that support turtle graphics, and
investigate the effect of changing the number of
times a loop repeats as well as the parameters
for the commands inside the loop. There are
some great opportunities to link computing with
spiritual, social and cultural education.

 Further resources

•• Barefoot Computing on ‘Repetition’, available at:
http://barefootcas.org.uk/programme-of-study/
use-repetition-programs/repetition (free, but
registration required).

•• Digital Schoolhouse dance scripts, available at:
www.resources.digitalschoolhouse.org.uk/key-
stage-2-ages-7-10/218-scratch-teaching-dance.

•• Scratch 2.0 Fishtank Game tutorial, available at:
www.youtube.com/watch?v=-qTZ5bFEdC8.

Variables
Unlike the programming structures of sequence,
selection and repetition, a variable is an example of
a data structure. It is a simple way of storing one
piece of information somewhere in the computer’s
memory whilst the program is running, and getting
that information back later. There’s a degree of
abstraction involved – the actual detail of how
the programming language, operating system and
hardware manages storing and retrieving data
from the memory chips inside the computer isn’t
important to us as programmers, just as these
details aren’t important when we’re using the
clipboard for copying and pasting text. One way of
thinking of variables is as labelled shoeboxes, with

the difference that the contents don’t get removed
when they’re used.

The concept of a variable is one that many pupils
struggle with and it’s worth showing them lots
of examples to ensure they grasp this. A classic
example which pupils are likely to be familiar with,
particularly from computer games, is that of score.

You can use variables to store data input by the
person using your program and then refer to this
data later on.

Here, name is a variable, in which we store whatever
the user types in, and then use it a couple of times in
Scratch’s response; answer is a special temporary
variable used by Scratch to store for the time being
whatever the user types in. Notice that variables
can store text as well as numbers. Other types of
data can be stored in variables too, depending on the
particular programming language you’re working in.

Variables can also be created by the program,
perhaps to store a constant value so that we can
refer to it by name (Pi below), or the result of a
computation (Circumference in the code below),
or random numbers generated by the computer (for
example Radius below):

The idea that the contents of the ‘box’ are still there
after the variable is used is sometimes a confusing
one for those learning to program. Have a look at the
following code and decide what will be displayed on
the screen:

http://barefootcas.org.uk/programme-of-study/use-repetition-programs/repetition
http://barefootcas.org.uk/programme-of-study/use-repetition-programs/repetition
http://www.resources.digitalschoolhouse.org.uk/key-stage-2-ages-7-10/218-scratch-teaching-dance
http://www.resources.digitalschoolhouse.org.uk/key-stage-2-ages-7-10/218-scratch-teaching-dance
www.youtube.com/watch?v=-qTZ5bFEdC8

28

QuickStart Computing

You should see ‘a is 20’ followed by ‘b is 20’. Try it!

In Kodu and other game programming, variables
are useful for keeping track of rewards, such as a
score, and for introducing some sort of limit, such
as a time limit or health points that reduce each
time you’re hit. Kodu’s event-driven approach allows
particular actions to be done when variables reach a
predetermined level.

One particularly useful example of variables in
programming is as an iterator – this is a way of keeping
track of how many times you’ve been round a repeating
loop and of doing something different each time you do.
To do this, we initialise a counter to zero or one at the
beginning of the loop and then add one to it each time
we go round the loop. For example, the following script
would get Scratch to say its eight times table:

You can also use an iterator like this to work with
strings (words and sentences) one letter at a time,
or through lists of data one item at a time. Take care
with the beginning and end, as it’s all too easy to
start or end too soon or too late with iterators.

 Classroom activity ideas

•• Get pupils to create a mystery function machine
in Scratch, which accepts an input, stores this in
a variable and then uses mathematical operators
to produce an output shown on screen. Setting
the display to full screen in Scratch, pupils can
challenge one another (and you) to work out what
the program does by trying different inputs.

•• Pupils can use variables in their games programs,
in say Scratch or Kodu, using a score to reward the
player for achieving particular objectives (such as
collecting apples), and imposing a time limit.

 Further resources

•• Bagge, P., ‘Text Adventure Game’ for Scratch,
available at: http://code-it.co.uk/year4/text_
adventure_game.pdf.

•• Barefoot Computing on ‘Variables’, available at:
http://barefootcas.org.uk/programme-of-study/
work-variables/variables/ (free, but registration
required).

•• BBC Bitesize article ‘How do computer programs
use variables?’, available at: www.bbc.co.uk/
guides/zw3dwmn.

•• Binary search jigsaw and solution by
mgberry, available at: http://scratch.mit.edu/
projects/20255402/ and http://scratch.mit.edu/
projects/28907496/.

•• How to program a Scratch 2.0 times table
test, available at: www.youtube.com/
watch?v=YHGyPfGg1x8.

•• Notes and tutorial on variables in Scratch,
available at: http://wiki.scratch.mit.edu/wiki/Variable
and http://wiki.scratch.mit.edu/wiki/Variables_
Tutorial.

Can we fix the code?
Errors in algorithms and code are called ‘bugs’,
and the process of finding and fixing these is called
‘debugging’. Debugging can often take much longer
than writing the code in the first place. Whilst fixing a
program so that it does work can bring a great buzz,
staring at code that still won’t work can be the cause
of great frustration too: this can be tricky to manage
in class.

The national curriculum for key stage 2 expects
that pupils will be taught to use logical reasoning
to detect and correct errors in algorithms and
programs, so it’s not really enough for pupils to fix
their code without being able to give an explanation
for what went wrong and how they fixed this.

In programming classes, pupils focused on the task
of writing a program for a particular goal might
want help from you or others to fix their programs:
tempting as this may be, it’s worth you and they
remembering that the objective in class is not to get a
working program, but to learn how to program – their
ability to debug their own code is a big part of that.

http://code-it.co.uk/year4/text_adventure_game.pdf
http://code-it.co.uk/year4/text_adventure_game.pdf
http://barefootcas.org.uk/programme-of-study/work-variables/variables/
http://barefootcas.org.uk/programme-of-study/work-variables/variables/
www.bbc.co.uk/guides/zw3dwmn
www.bbc.co.uk/guides/zw3dwmn
http://scratch.mit.edu/projects/20255402/
http://scratch.mit.edu/projects/20255402/
http://scratch.mit.edu/projects/28907496/
http://scratch.mit.edu/projects/28907496/
https://www.youtube.com/watch?v=YHGyPfGg1x8
https://www.youtube.com/watch?v=YHGyPfGg1x8
http://wiki.scratch.mit.edu/wiki/Variable
http://wiki.scratch.mit.edu/wiki/Variables_Tutorial
http://wiki.scratch.mit.edu/wiki/Variables_Tutorial

29

Programming

One way that you can help is to provide a reasonably
robust, general set of debugging strategies which
pupils can use for any programming, or indeed more
general strategies which they can use when they
encounter problems elsewhere.

Debugging should be underpinned by logical
reasoning. The Barefoot Computing team suggest
a simple sequence of four steps, emphasising the
importance of logical reasoning:

1. Predict what should happen.
2. Find out exactly what happens.
3. Work out where something has gone wrong.
4. Fix it.

One way to help predict what should happen is to
get pupils to explain their algorithm and code to
someone else. In doing so, it’s quite likely that they’ll
spot where there’s a problem in the way they’re
thinking about the problem or in the way they’ve
coded the solution.

In finding out exactly what happens, it can be useful
to work through the code, line by line. Seymour
Papert described this as ‘playing turtle’. So, in a
turtle graphics program in Logo (or similar) pupils
could act out the role of the turtle, walking and
turning as they follow the commands in the language.

In working out where something has gone wrong,
encourage pupils to look back at their algorithms
before they look at their code. Before they can get
started with fixing bugs, they’ll need to establish
whether it was an issue with their thinking or with
the way they’ve implemented that as code.

Some programming environments allow you to step
through code one line at a time – you can do this in
Scratch by adding (wait until [space] pressed)
blocks in liberally. Scratch will default to showing
where sprites are and the contents of any variables
as it runs through code, which can also be useful in
helping to work out exactly what caused the problem.

Debugging is a great opportunity for pupils to
learn from their mistakes and to get better at
programming.

 Classroom activity ideas

•• Pupils are likely to make many authentic errors
in their own code, which they’ll want to fix.
You might find that it’s worth spending some
time giving pupils some bugs to find and fix in
other programs, both as a way to help develop
strategies for debugging and to help with
assessment of logical reasoning and programming
knowledge. Create some programs with
deliberate mistakes in, perhaps using a range
of logical or semantic errors, and set pupils the
challenge of finding and fixing these.

•• Encourage pupils to debug one another’s code.
One approach is for pupils to work on their own
program for the first part of the lesson and then
to take over their partner’s project, completing
this and then debugging this for their friend.

•• A similar paired activity is for pupils to write code
with deliberate mistakes, setting a challenge to
their partner to find and then fix the errors in the
code.

 Further resources

•• Barefoot Computing on ‘Debugging’, available
at: http://barefootcas.org.uk/barefoot-primary-
computing-resources/computational-thinking-
approaches/debugging/ (free, but registration
required).

•• BBC Bitesize ‘What is debugging?’, available at:
www.bbc.co.uk/guides/ztkx6sg.

•• Debugging challenges from Switched on
Computing, available via: http://scratch.mit.edu/
studios/306100/.

•• Rubber duck debugging, available at: http://
en.wikipedia.org/wiki/Rubber_duck_debugging.

What strategies can you use
to support debugging?

http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/debugging/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/debugging/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/debugging/
www.bbc.co.uk/guides/ztkx6sg
http://scratch.mit.edu/studios/306100/
http://scratch.mit.edu/studios/306100/
http://en.wikipedia.org/wiki/Rubber_duck_debugging
http://en.wikipedia.org/wiki/Rubber_duck_debugging

30

QuickStart Computing

Technology

What is a computer?

The term ‘computer’ originally referred to people
whose job it was to perform repeated numerical
calculations according to a set of instructions (i.e. an
algorithm). Since the 1940s it has been used to refer
to digital machines that accept data input, process
this according to some set of stored instructions
(i.e. a program) and output some sort of information.

The power of digital computers comes from their
ability to run through these stored instructions
incredibly quickly. The silicon chip at the heart of
a modern smartphone can execute over a billion
instructions per second!

A digital computer comprises two inter-related systems.

⚫⚫ Hardware: the physical components, including the
processor, memory, power supply, screen, etc.

⚫⚫ Software: the core operating system, embedded
control programs, compilers or interpreters and
many application programs.

There is an incredible variety of electronic devices
that contain some sort of digital computer. There are
two different types of device:

Computer-controlled for specific purpose
•	digital watch
•	digital television
•	digital camera …

Programmable computer – can do many
different things
•	laptop
•	tablet
•	smartphone …

The memory of a computer stores both the programs
it needs to operate and the data that it processes.
There are different types of computer memory and
usually there’s a trade-off between speed and cost.
These days, high capacity storage has become very
cheap, so that data centres can provide users with
vast amounts of storage for little or no cost through
services such as Microsoft OneDrive and Google Drive.

Irrespective of where programs or data are stored in
computer memory, they are always stored in a digital
format. Information is represented as sequences of
numbers. The numbers themselves are stored in a
binary code, represented using just two symbols:
0 and 1 (this number system is called base 2). Each 0
or 1 is called a bit.

A range of standard codes are used to convert machine
code, images, sound or video into a digital format.
These provide standard ways to represent information
of different types in binary. Text data is encoded in
Unicode. A byte is a group of eight bits; it’s used as a unit
of memory. Eight bits are more than enough to store
one character from the Latin alphabet, in upper or lower
case, a punctuation symbol, a digit, etc. One thousand
bytes make a kilobyte: enough to store 1000 characters
(a short paragraph).

Images, sound and video have their own accepted
standards for being encoded digitally, such as bitmaps
for images or ‘WAV’ files for audio. These typically
take up much more room than text, so often a form
of compression is used (where patterns in the data
help reduce the amount of storage space needed). If
the original data can be recovered perfectly this is

How do computers
remember things?

31

Technology

called lossless compression. If some of the original
information is thrown away, the original image, sound
or video can be stored in a much more compact format,
although some of the original quality is lost in the
process: this is ‘lossy’ compression.

Interestingly, the key stage 2 programme of
study is more concerned with how information is
communicated than how it’s stored, but binary
representation should be covered in:

⚫⚫ ‘work with … various forms of input and output’
⚫⚫ ‘understand computer networks, including the
internet’.1

In order for a computer to be able to do anything
in the real world, it needs some form of input (to
receive data) and some form of output (to push
information back out).

The form of input will vary:

Laptop inputs
•	keyboard
•	trackpad/touchpad
•	microphone
•	webcam
•	through a port (e.g. USB mouse)
•	via a network connection …

Smartphone inputs
•	touch-sensitive screen
•	buttons
•	microphone
•	camera
•	GPS receiver
•	accelerometer
•	barometer
•	through a port
•	via a network connection …

A computer will need to convert the analogue, real-
world data it receives into a digital format before
it can be processed, stored or transmitted. We call
this process digitisation and it inevitably involves
throwing away some of the fine detail of the real-
world information.

Computers can produce many different forms of output:

Laptop/desktop PC outputs
•	screen
•	speakers
•	printer
•	headphones
•	network connections ...

Smartphone/tablet outputs
•	screen
•	speakers
•	small motor to produce vibrations
•	bright LEDs used as a flash
•	network connections ...

What is a robot?
A robot is a computer that can move. This could be a
single, integrated system such as a programmable
toy, or it could be a motor under a computer’s
control, such as a robotic arm in manufacturing.

Robots are used widely in industry, where repetitive
tasks can be performed effectively and efficiently by
machines. As ‘smarter’ algorithms have been developed
by computer scientists, more and more decision-making
capabilities can be built in to the robot, so that it can
autonomously react to changes in its environment.

 Further resources

⚫⚫ ‘Arduino the cat, Breadboard the mouse and
Cutter the Elephant’: video of a group of girls
planning and programming soft toys, available at:
http://vimeo.com/4313755.

⚫⚫ Barefoot on ‘Computer systems’, available at:
http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/computer-
systems/ (free, but registration required).

⚫⚫ Barefoot on ‘Inputs’, available at: http://
barefootcas.org.uk/programme-of-study/
work-various-forms-input/inputs/ (free, but
registration required).

⚫⚫ Barefoot on ‘Outputs’, available at: http://
barefootcas.org.uk/programme-of-study/
work-various-forms-output/outputs/ (free, but
registration required).

⚫⚫ BBC Cracking the Code: Miniature computers,
available at: www.bbc.co.uk/programmes/
p01661f7.

⚫⚫ BBC Cracking the Code: Robots, available at:
www.bbc.co.uk/programmes/p01661tn.

How do computers interact
with the real world?

1 National Curriculum in England, Computing Programmes of Study
(Department for Education, 2013).

http://vimeo.com/4313755
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computer-systems/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computer-systems/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computer-systems/
http://barefootcas.org.uk/programme-of-study/work-various-forms-input/inputs/
http://barefootcas.org.uk/programme-of-study/work-various-forms-input/inputs/
http://barefootcas.org.uk/programme-of-study/work-various-forms-input/inputs/
http://barefootcas.org.uk/programme-of-study/work-various-forms-output/outputs/
http://barefootcas.org.uk/programme-of-study/work-various-forms-output/outputs/
http://barefootcas.org.uk/programme-of-study/work-various-forms-output/outputs/
http://www.bbc.co.uk/programmes/p01661f7
http://www.bbc.co.uk/programmes/p01661f7
http://www.bbc.co.uk/programmes/p01661tn

32

QuickStart Computing

How do computers
communicate?

Connecting computers to form computer networks and
the internet (a network of networks) has had a huge
impact on our lives.

Think about how limited our use of technology in school
would be if we had no access to the local network or
the internet. Think about how frustrating it is when we
have no data signal for our smartphones or wifi for our
laptops.

The internet has made it possible to communicate
and collaborate with a richness and immediacy never
experienced before. And yet, it’s something that most of
us take for granted.

The new computing curriculum sets out to change this.
It requires that pupils are taught:

⚫⚫ in key stage 1: to ‘recognise common uses of
information technology beyond school’

⚫⚫ in key stage 2: to ‘understand computer networks,
including the internet [and] how they can provide
multiple services, such as the world wide web’

⚫⚫ in key stage 2: to ‘use search technologies effectively,
appreciate how results are selected and ranked, and
be discerning in evaluating digital content’.1

The internet is a physical thing: it’s the cables, fibre,
transmitters, receivers, switches, routers (and all the
rest of the hardware) that connects computers, or
networks of computers, to one another.

The internet has been designed to do one job: to
transport data from one computer to another. This
information might be an email, the content of a web
page, or the audio and video for a video call.

The data that travels via the internet is digital: this
means it is expressed as numbers. All information on the
internet is expressed this way, including text, images
and audio. These numbers are communicated using
binary code, which is made up of 1s and 0s, using on/
off (or low and high) electrical or optical signals. Binary
code is similar to the Morse code used for the telegraph
in Victorian times, but it’s much, much faster. A good
telegraph operator could work at maybe 70 characters
(letters) a second, but even a basic school network
can pass data at 100 million on/off pulses a second,
enough for some 12.5 million characters per second. One
transatlantic fibre connection has the capacity for up to
400 billion characters per second!

Digitised information needs to be broken down into small
chunks by the computer before it can be sent efficiently.
These smaller chunks of data are known as ‘packets’.

The small packets can be passed quickly through the
internet to the receiving computer where they are re-
assembled into the original data. The process happens
so quickly that high definition video can be watched this
way, normally without any glitches.

 1 National Curriculum in England, Computing Programmes of Study

(Department for Education, 2013).

How does the internet work?

Computer
networks

How the internet
works

33

Computer networks

The packets don’t all have to travel the same way
through the internet: they can take any route from
sender to recipient. However, there is generally a most
efficient route, which all the packets would take.

A sample network: note there is more than one route for packets to travel.

It’s perhaps easier to understand how the internet
works now by looking at a picture of how it worked in
1969 when it started:

Here you see the internet made up of just four routers:
UCLA, SRI, UCSB and UTAH. Each router is a piece
of hardware that passes packets of data from the
networks they are connected to (in the case of UTAH,
PDP10, in the case of UCLA, SIGMA 7) to any of the other
three networks.

So if you were using the PDP10 network at the
University of UTAH and sent a message to someone

at UCLA, your message would be passed first to your
router at UTAH, then on to the router at Stanford
Research Institute (SRI), then (normally) to UCLA’s
router, where it would be passed on to whichever
recipient it was intended for on their SIGMA 7.

The internet is obviously much, much bigger than this
example. In real life, the journey of a packet of data from
your home computer to one of Microsoft’s server farms
might look something like this:

your home wifi access point
�

your home switch and router
(usually all in the same black box)

�

switches in your nearest BT green cabinet
�

more switches in your local telephone exchange
�

London internet exchange
�

routers near Porthcurno in Cornwall
�

fibre optics under the Atlantic
�

further switches and routers in the USA
until Microsoft’s internet connection at whichever

of its data centres you are communicating with

When you type a URL (such as www.bbc.co.uk or
www.computingatschool.org.uk) into your browser you
send a packet of data requesting the content of these
pages to be returned to you. But before this can happen,
the domain name first needs to be converted into
numbers. This is the job of the Domain Name Service
(DNS), which converts these familiar web addresses into
numbers known as IP (Internet Protocol) addresses.
The DNS itself uses the internet to look up (in the
equivalent of huge phone books) the numeric address
corresponding to the domain names.

Each packet has a destination IP address on it. With
it the router can easily look up which way to pass the
packet on.

Server

Server

Most efficient route
for packets

Key

Router

Network

Stanford Research Institute
University of UTAH

University of California, Santa Barbara

University of California, Los Angeles

Key

Router

Network

Stanford Research Institute
University of UTAH

University of California, Santa Barbara

University of California, Los Angeles

Key

Router

http://www.bbc.co.uk
www.computingatschool.org.uk

34

QuickStart Computing

Who can see the data we transmit? Table 1 (6 pupils)

Table 2 (6 pupils)

Router

Router

1.41.3 1.5

1.11.0 1.2

2.42.3 2.5

2.12.0 2.2

To: 2.3
Sequence: 1 of 3
Data: What
From: 1.5

To: 2.3
Sequence: 2 of 3
Data: is for
From: 1.5

To: 2.3
Sequence: 3 of 3
Data: tea?
From: 1.5

There’s nothing to stop routers from looking at the data
in the packet before they pass it on (just as there was
nothing to stop telegraph clerks reading the messages
they passed on in Morse code).

To be able to send information, such as passwords
or bank account details, secretly via the internet, it’s
important to encrypt the data first. This happens
automatically when using the ‘https’ version of websites
(see page 37). In these situations, you’ll see a little
green padlock displayed in
your browser’s address bar.
The data is decrypted when it
reaches its destination.

 Classroom activity ideas

⚫⚫ Ask pupils to draw a picture of the internet. This will
allow you to spot any misconceptions they have,
and provide an opportunity for pupils to share their
understanding.

⚫⚫ Carry out this ‘unplugged’ activity to model how the
internet passes packets of data.
»» Organise all but four of your pupils into groups.
»» Tell the pupils to choose one pupil in their group to

be the ‘group router’. The rest of the group will be
‘computers’.

»» Ask the remaining four pupils to take on the role of
‘internet routers’, which connect the group routers
together.

»» Give each ‘computer’ a numerical address,
comprising a group number and a computer
number (e.g. 1.1, 1.2, 1.3; 2.1, 2.2, 2.3, etc.).

»» Ask each ‘computer’ to write a short message to
another ‘computer’ in a different group, splitting
their message over three different slips of paper
and marking their slips ‘1 of 3’, ‘2 of 3’ and ‘3 of 3’.
Tell them to write their numerical address and the
numerical address of the recipient, e.g. ‘To: 2.2;
From 3.4; 2 of 3.’ This is the ‘packet header’.

»» Ask the ‘computers’ to pass their slips to their
‘group router’, who can pass these on one at a time
to the ‘internet routers’. They in turn pass them
to the correct ‘group router’ who passes them to
the recipient themselves, who can reassemble the
message as their other packets arrive.

Role-playing a computer network in class.

⚫⚫ Investigate the physical infrastructure of the school
network. Tell the pupils to walk from their laptop to
the local wifi point, or to follow the network cable
from the computer to the classroom switch. Next,
walk together to the school’s main network switch,
firewall and router. If you can, then walk down to the
nearest BT green cabinet, and perhaps to your local
telephone exchange, depending on how close this is
to you.

⚫⚫ Explore the steps on the journey of a packet using
the ‘tracert’ command at the Windows command
prompt, if you have access to this. Also see the Visual
traceroute reference in Further resources.

⚫⚫ Ask your school network manager to talk pupils
through how the school network connects their
computers to the rest of the internet.

 Further resources

⚫⚫ Bagge, P., ‘Year 5 Computer Science Planning’,
available at: www.code-it.co.uk/year5/index.htm.

⚫⚫ Barefoot on ‘KS2 Modelling the Internet activity’,
available at: http://barefootcas.org.uk/programme-
of-study/understand-computer-networks-including-
internet/ks2-activity-modelling-the-internet/ (free,
but registration required).

⚫⚫ Barefoot on ‘Internet Services’, available at: http://
barefootcas.org.uk/programme-of-study/multiple-
services-provided-networks-internet/internet-
services/ (free, but registration required).

⚫⚫ BBC Bitesize clip ‘Computer networks – LAN and
WAN’, available at: www.bbc.co.uk/learningzone/
clips/computer-networks-lan-and-wan/4381.html.

⚫⚫ Blum, A., Tubes: Behind the Scenes at the Internet
(Viking, 2012).

Message slips

http://www.code-it.co.uk/year5/index.htm
http://barefootcas.org.uk/programme-of-study/understand-computer-networks-including-internet/ks2-activity-modelling-the-internet/
http://barefootcas.org.uk/programme-of-study/understand-computer-networks-including-internet/ks2-activity-modelling-the-internet/
http://barefootcas.org.uk/programme-of-study/understand-computer-networks-including-internet/ks2-activity-modelling-the-internet/
http://barefootcas.org.uk/programme-of-study/multiple-services-provided-networks-internet/internet-services/
http://barefootcas.org.uk/programme-of-study/multiple-services-provided-networks-internet/internet-services/
http://barefootcas.org.uk/programme-of-study/multiple-services-provided-networks-internet/internet-services/
http://barefootcas.org.uk/programme-of-study/multiple-services-provided-networks-internet/internet-services/
http://www.bbc.co.uk/learningzone/clips/computer-networks-lan-and-wan/4381.html
http://www.bbc.co.uk/learningzone/clips/computer-networks-lan-and-wan/4381.html

35

Computer networks

⚫⚫ Andrew Blum’s talk ‘Discover the physical side of the
internet’, available at: www.ted.com/talks/andrew_
blum_what_is_the_Internet_really.

⚫⚫ Artistic representations of what the internet means,
available at: www.canyoudrawtheinternet.com.

⚫⚫ Mark Dorling and others’ Digital Schoolhouse
planning on networks, ‘Networks Unplugged’,
available at: www.digitalschoolhouse.org.uk/
documents/networks-unplugged-workshop-pack.

⚫⚫ Naughton, J., From Gutenberg to Zuckerberg: What
You Really Need to Know About the Internet (Quercus,
2012).

⚫⚫ Visual traceroute to find the path from their web
server to an internet address, available at: www.
yougetsignal.com/tools/visual-tracert/.

Picture the train network, efficiently routing trains of
all kinds from one point to another, irrespective of what
those trains contain. Some will have passengers, others
freight, others are perhaps maintenance stock. In the
same way, the infrastructure of the internet can be used
for lots of different things.

The services which run on computer networks, including
the internet, fall into roughly two groups:
1.	client–server: one computer (the client) accesses

services or content running or stored on another,
typically larger, computer (the server)

2.	peer-to-peer: two computers communicate directly as
equals, passing data directly to and from each other.

The World Wide Web (see page 36) fits into the client–
server model, but so do lots of other services which
use computer networks and the internet as a means of
communicating.

A school network will often have one or more computers
acting as servers, responding to requests from the
desktop, laptop and tablet computers which act as
clients. On a local area network (LAN) like this, the
servers might provide: central storage and backup for
files, access to documents, etc. from any computer on
the network, a management information system (such
as SIMS), local email accounts, access to printers,
username and password authentication, filtering and
logging of access to the web and even locally stored
copies of frequently visited web pages.

Email is a good example of a client–server system using
the internet (although many people’s experience of email
is as webmail accessed through a browser like Internet
Explorer). The journey of an email might be something
like this:

⚫⚫ Alice opens up Outlook and starts typing in her email
to Bob. She includes Bob’s email address, bob@
builders.com, in the ‘To’ line of the email and clicks
‘send’.

⚫⚫ The email is transmitted via the internet (or the local
network) to her outgoing mail server. If the email
is intended for another domain (builders.com here)
rather than Alice’s own (lookingglass.org) then
Exchange will forward the email as packets of data
via the internet, which routes these through to the
incoming mail server for builders.com as discussed
above.

⚫⚫ The inbound mail server at builders.com (again
perhaps running Exchange) re-assembles the
message from the packets of data, accepts this and
stores this ready for Bob to collect.

⚫⚫ Later on, Bob’s email client (perhaps also Outlook)
connects to his mail server and asks if there are
any messages for him. The one from Alice gets
transmitted to Bob’s computer via the local network
or the internet, where Bob can read it in his email
software.

Although it might look to Alice and Bob as though they
are communicating directly with each other, all their
emails are going via the outbound and inbound mail
servers. Notice that the contents of their emails aren’t
encrypted, so the organisations running the two mail
servers can read the contents of these messages if
they wish.

Not all communication on the internet uses a client–
server model. For example, peer-to-peer communication
is a model used for Skype and a number of other video
conferencing or voice over internet systems. Although
Skype uses a server to maintain a list of logged-in users
and the IP address of their computers, when a call is

What can you do with the internet?

Client–server

Client computer

Client computer

Server computer

Client computer

Peer-to-peer

http://www.ted.com/talks/andrew_blum_what_is_the_Internet_really
http://www.ted.com/talks/andrew_blum_what_is_the_Internet_really
http://www.canyoudrawtheinternet.com
http://www.digitalschoolhouse.org.uk/documents/networks-unplugged-workshop-pack
http://www.digitalschoolhouse.org.uk/documents/networks-unplugged-workshop-pack
http://www.yougetsignal.com/tools/visual-tracert/
http://www.yougetsignal.com/tools/visual-tracert/

36

QuickStart Computing

connected the packets of data that make up the digitised
video and audio for the call are routed directly through
the internet between the two parties.

Some online gaming websites use a similar peer-to-peer
system, as does BitTorrent, a protocol which allows
large files to be shared between many computers by
allowing direct peer-to-peer connections. Because peer-
to-peer connections are harder for large organisations
to monitor, they are favoured by those using the
internet for criminal purposes, for example the use of
the BitTorrent protocol for illegally sharing copyrighted
material.

 Classroom activity ideas

⚫⚫ Role-play can be used very effectively to teach
how email works and issues with email security.
Explain to pupils that email addresses can be
‘spoofed’ or accounts hacked. So, not all emails
are from who they appear to be. Warn them that
files attached to emails can contain viruses. Also
explain that links in emails can sometimes point
to websites that are set up to capture personal
information such as passwords. You might like
to run this as part of a larger topic looking at
the effective and safe use of email, perhaps in a
twinning project with a class in this or another
country.

⚫⚫ Share and write a range of emails and written
letters. Discuss the advantages and
disadvantages of each type of communication.

⚫⚫ Use a video conferencing system to allow experts
to talk to the class or to allow two classes to
communicate. As you set up the computer, talk
through the technical aspects of the call with
your pupils. Note: Skype and most other video
conferencing systems don’t allow children to
register for accounts, so you will need to run this
as a whole-class activity.

⚫⚫ Encourage pupils to talk about how they and
their families use the internet to communicate,
highlighting any services they use in addition to
the World Wide Web.

 Further resources

⚫⚫ Guha, S., Daswani, N. and Jain, R., ‘An Experimental
Study of the Skype Peer-to-Peer VoIP System’
(2006), available at: http://saikat.guha.cc/pub/
iptps06-skype.pdf.

⚫⚫ The journey of a letter, available at:
www.anpost.ie/anpost/schoolbag/primary/
our+people/the+journey+of+your+mail/.

⚫⚫ ‘Story of Send on Google Green’ (a short cartoon
about the journey of a gmail), available at: www.
youtube.com/watch?v=5Be2YnlRIg8.

In 1989, British computer scientist Tim Berners-Lee
decided to combine the capabilities of the internet
with the functions of hypertext (documents that
include hyperlinks that allow connections to be
made between different files) to manage information
systems at CERN where he was working.

The links in the hypertext take the reader to different documents which
extend or support the information in the original document.

Berners-Lee developed a specification for how an
internet-based version of hypertext would work and
then wrote the software for the first web servers
and web browsers. The result was the World Wide
Web.

The internet is about connecting computers together,
but the World Wide Web is about the connections
between documents. When you click on a web link,
another web page is requested from (typically) a
different web server somewhere else on the internet.

What is the World Wide Web?

Hypertext

http://saikat.guha.cc/pub/iptps06-skype.pdf
http://saikat.guha.cc/pub/iptps06-skype.pdf
http://www.anpost.ie/anpost/schoolbag/primary/our+people/the+journey+of+your+mail/
http://www.anpost.ie/anpost/schoolbag/primary/our+people/the+journey+of+your+mail/
http://www.youtube.com/watch?v=5Be2YnlRIg8
http://www.youtube.com/watch?v=5Be2YnlRIg8

37

Computer networks

The content of this web page is then delivered to
your web browser.

The World Wide Web is about the connection (the links) between
documents.

To ensure that all computers could communicate with
one another, Berners-Lee developed a set of standards
(called protocols) for the Web. Versions of these are all
still used today.

1. HTTP (HyperText Transfer Protocol)
This is the process that computers use to request and
transfer hypertext to one another.

The Web is a client–server system: we use a web
browser on our computer to request a web page
from one of the many, many web servers connected
to the internet. The request travels as a packet
of data via switches and routers until it reaches
the intended web server. The server responds by
sending back the content of the page, together with
any images and formatting instructions and mini
programs (typically in JavaScript) needed for the
page. If the page isn’t there, it sends back a ‘404:
Not found’ error message – sometimes you’ll see
other error messages too.

Remember that the internet doesn’t encrypt packets
of data: there’s another version of HTTP, called HTTPS,
where the request for a page, the contents of the page
and any information entered into a form (such as a
password) are sent over the internet in an encrypted
form. This encryption can sometimes be bypassed by
network managers and government agencies.

2. URL (Uniform Resource Locator)
URLs are the precise location on the Web where web
pages or their components are stored. It’s what you
type in to your browser’s address bar to request a page.

Each bit of a URL means something. Let’s look at the
URL of one of the first web pages – Berners-Lee’s
home page for the World Wide Web project itself –
to work out what each bit means:

http://info.cern.ch/hypertext/WWW/TheProject.html

⚫⚫ http: this is the protocol we’re using to request
hypertext and the content that comes back – see
above.

⚫⚫ :// is just punctuation – Berners-Lee now thinks it
would have been better if he’d skipped the // bit!

⚫⚫ info is the name of the web server we’re connecting
to. Often this will be www these days, or this is just
omitted as the main web server for the organisation
will be assumed.

⚫⚫ cern is the name of the organisation, in this case the
European Centre for Nuclear Research.

⚫⚫ ch is an abbreviation for the country where the
organisation has registered their domain name, in
this case Switzerland. Some countries also show
what sort of organisation it is registered as,
e.g .co.uk for a commercial site and .sch.uk for a
school site in the UK. If no country is shown, then it
will be registered in the USA: .com for commercial
sites, .edu for university sites, and so on.

⚫⚫ /hypertext is a directory (folder) on the web server.
⚫⚫ /WWW is a directory inside the /hypertext
directory on the web server.

⚫⚫ TheProject is the name of the actual file we’re
requesting, in this case a web page about the
World Wide Web project. Sometimes you don’t see
a file name at the end of a URL, in which case the
web server will send back the default file for the
directory, often an index page such as index.html.

⚫⚫ .html is the file extension, which shows what
format the page is written in, in this case HTML
(see page 38). This is like .doc or .docx for a Word
file, or .jpg or .jpeg for an image.

Although it is often convenient to use search engines
like Google or Bing to find pages rather than typing
in URLs, the URL is a good way to check that you’re
connecting to the web server you think you are
(rather than a spoof website). URLs are also useful
when acknowledging sources of information, and for
creating links between pages (and so building more
of the connections that make the Web so useful).

What standards does the
World Wide Web use?

http://info.cern.ch/hypertext/WWW/TheProject.html

38

QuickStart Computing

3. HTML (HyperText Mark-up Language)
HTML is the computer language (code) in which the
content and structure of a web page are described or
‘marked up’.

The content of web pages is stored in HTML format
on web servers. Creating a web page involves writing
(or getting a computer to generate) the HTML that
describes the page. HTML can be read, and written,
by humans as well as computers. You can view the
HTML source code for any web page using tools built
into your web browser. (There’s a menu command to
do this, or you can press ‘ctrl-u’ in Internet Explorer.)

These days, the HTML for a web page might not
be stored as a file on the web server: in content
management systems, when a page is requested it
will be generated automatically using a database
of content, a template and some programs running
on the web server. For example, every time you
visit www.bbc.co.uk/newsround/ the page will be
generated using the latest news in the database.

More recently, a couple of other languages have come
to play an important part in developing for the Web.

CSS (Cascading Style Sheets)
CSS provides formatting information alongside the
content and structure of HTML, allowing designers
and developers to specify exactly how the content of
the page should be displayed in the web browser on a
computer, tablet, smartphone or printer.

JavaScript
JavaScript is a programming language that can be
interpreted by the web browser itself, allowing
interaction with the content of a page to be handled
by the user’s computer (the client) rather than on
the server itself. The web-based version of Office
365 relies heavily on JavaScript.

The amazing thing about the Web isn’t really these
technologies though. It’s that, from its early days as the
preserve of academic scientists, so many organisations
and individuals have connected their own web servers
to the internet and added their own content to the Web.
In part this was because Berners-Lee created a system
that was accessible, scalable and extensible, capturing
the imagination of many. But it’s also because he and

CERN gave it to the world for free – the standards and
the technology were entirely open, without any central
authority or commercial company licensing or charging
for their use.

 Classroom activity ideas

⚫⚫ The national curriculum for history suggests that
key stage 1 pupils could look at William Caxton
(who introduced the printing press to England
in the fifteenth century) and Tim Berners-Lee as
examples of ‘the lives of significant individuals
in the past who have contributed to national and
international achievements’. Compare the life,
work and influence of these two figures.

⚫⚫ Encourage pupils to look at the different parts
of the URLs for the web pages they visit, asking
them to explain what each part of the URL means.
Make a display showing the different parts of
some interesting or common URLs.

⚫⚫ Ask pupils to talk to their parents, grandparents
or carers about the difference the World Wide
Web has made in their lives.

⚫⚫ Tell pupils to keep a diary of the different ways
they use the Web over a week.

 Further resources

⚫⚫ BBC Bitesize ‘What is the world wide web?’, available
at: http://www.bbc.co.uk/guides/z2nbgk7.

⚫⚫ Tim Berners-Lee ‘Answers for Young People’,
available at: www.w3.org/People/Berners-Lee/
Kids.html.

⚫⚫ The original CERN home page for the Web,
available at: http://info.cern.ch/hypertext/WWW/
TheProject.html.

⚫⚫ Codecademy curriculum materials, available
at: www.codecademy.com/schools/curriculum
(registration required).

⚫⚫ Mozilla Web Literacy whitepaper, available at: http://
mozilla.github.io/webmaker-whitepaper/.

⚫⚫ Wayback Machine to search for historic web
pages, available at: http://archive.org/web/.

There are plenty of tools available for you and your
pupils to create your own content for the Web.

Your school’s learning platform or VLE provides one
way to get content online, as do blogging platforms

How do you make a web page?

What’s the most amazing
thing about the Web?

www.bbc.co.uk/newsround/
http://www.bbc.co.uk/guides/z2nbgk7
http://www.w3.org/People/Berners-Lee/Kids.html
http://www.w3.org/People/Berners-Lee/Kids.html
http://info.cern.ch/hypertext/WWW/TheProject.html
http://info.cern.ch/hypertext/WWW/TheProject.html
www.codecademy.com/schools/curriculum
http://mozilla.github.io/webmaker-whitepaper/
http://mozilla.github.io/webmaker-whitepaper/
http://archive.org/web/

39

Computer networks

like WordPress. These platforms usually include a
‘WYSIWYG’ (what you see is what you get) editor.
This makes writing content for the Web similar to
using Microsoft Word, with a range of formatting
controls built in. In most of these editors, you can
swap into code (or source view), seeing and editing
the HTML itself. This can be a good introduction to
working directly in HTML, as you can always swap
back to the WYSIWYG view to see the effects of
editing the code.

Giving pupils some experience of writing content
for the Web through editing HTML ‘by hand’ is well
worth doing although it isn’t, strictly speaking,
programming. It adds to their understanding of
networks including the internet that the national
curriculum at key stage 2 expects, and is one more
way of using software on a range of devices to
create content. It is also a good way to get pupils
used to working in a formal, text-based computer
language. As with other text-based languages,
working in HTML helps reinforce the importance of
spelling, punctuation and grammar: mistakes in the
mark-up of the page usually become quite apparent
in the way the browser displays the page.

Many pupils are likely to find these skills useful in the
long term too, both at secondary school and beyond:
developing content for the Web is part of many jobs,
teaching included.

Let’s compare the HTML code for a simple web page
and the page itself.
<!doctype html>
<html>
 <head>
 	 <meta charset=“utf-8”>
 <title>A simple webpage</title>
 </head>
 <body>
 <h1>Origins of the Web</h1>
 <p>Tim Berners-Lee started working on
the world-wide web project in 1989.</p>
 <p>He was working at <a href=“http://
home.web.cern.ch/”>CERN in Switzerland
at the time.</p>
 <img src=“http://upload.wikimedia.org/
wikipedia/commons/thumb/7/7e/Tim_Berners-
Lee_CP_2.jpg/320px-Tim_Berners-Lee_CP_2.
jpg”>
 </body>
</html>

Can you see where the content for the page comes
from in the code? Can you see what effect some of
the HTML tags (the bits in the <...> angle brackets
like <h1> and <p>) have on how the content is
structured?

Notice how most of the tags come in matched pairs,
e.g.
⚫⚫ <html> and ending </html> for the whole page
⚫⚫ <head> to </head> for the information about the
page, such as its character set and title
⚫⚫ <body> to </body> for the content of the page
⚫⚫ <h1> to </h1> around the main heading for the
page
⚫⚫ <p> to </p> around each paragraph.

Compare the underlined link in the web page with the
corresponding code. In the code, <a> to show
where the link should be and href=“http://home.
web.cern.ch/” inside the <a> tag detail where the
link should point to.

An image is inserted from elsewhere on the web,
using a single tag, this time without a
matched closing tag, and again giving the location of
the image using src=“http://upload.wikimedia.
org/wikipedia/commons/thumb/7/7e/Tim_
Berners-Lee_CP_2.jpg/320px-Tim_Berners-
Lee_CP_2.jpg” inside the tag.

Mozilla’s Thimble tool for creating websites
(available at: https://thimble.webmaker.org/) makes
it easy to get started with coding in HTML, as it
displays the source code alongside the resulting
web page.

What does HTML look like?

How do I get started with HTML?

Origins of the Web
Tim Berners-Lee started working on the world-wide web project in 1989.

He was working at CERN in Switzerland at the time.

http://home.web.cern.ch/
http://home.web.cern.ch/
https://thimble.webmaker.org/

40

QuickStart Computing

Rather than starting from a blank page, pupils can
try editing other web pages, exploring the structure
and HTML code of these pages and seeing what
effect changing the code has on how the page is
displayed in the browser.

On Internet Explorer, you can use the Developer
Tools (hit F12, or launch via the menu) to view and
edit the source code (the HTML code which describes
the content and structure) for a page. Alternatively,
you can install Mozilla’s X-Ray Goggles as an active
bookmarklet (see Further resources) to remix and
share edited web pages.

 Classroom activity ideas

⚫⚫ When using their learning platform, VLE or class
blog, encourage pupils to swap from the normal
WYSIWYG (what you see is what you get) mode of
the built-in editor into the code, source or HTML
mode and try writing their post or page in that.
Remind them that they can swap back and forth
to see how the code relates to the page that’s
displayed. Give pupils a list of some common HTML
tags to try out for themselves.

⚫⚫ Set pupils the challenge of making a parody of a web
page by using either the Developer Tools in Internet
Explorer or X-Ray Goggles to edit the code for the
page. It’s wise to decide some ground rules for this
activity in advance. Show pupils how easily a spoof
page can be created this way, and explain why it’s so
important to check the address of the page they’re
visiting to confirm it is authentic rather than merely
one which looks convincing.

⚫⚫ Rather than asking pupils to write up a story or a
report using Word, challenge them to do this using
HTML code to make a web page. Emphasise that they
need to concentrate on the content and structure
of their page, which is what HTML is designed
for. Encourage them to add in links to supporting
material using the <a> tag if they’re creating a non-
fiction account, and perhaps to add in some images
from elsewhere on the Web using the tag.

 Further resources

⚫⚫ Learn to code tutorials from Codecademy, available
at: www.codecademy.com/ (registration required).

⚫⚫ Shay Howe ‘Learn to Code and CSS’ tutorials,
available at: http://learn.shayhowe.com/.

⚫⚫ ‘App Design Basics: Learn to code using HTML
and CSS’ from Playto, available at: https://learn.
playto.io/html-css/lesson/0.

⚫⚫ Thimble: https://thimble.webmaker.org/.
⚫⚫ Tutorials on a wide range of computer languages
from w3schools, available at: www.w3schools.com/.

⚫⚫ See the source code behind web pages using X-Ray
Goggles, available at: https://goggles.webmaker.org/.

Search engines like Google and Bing have
transformed the way we use the Web. Instead of
having to remember URLs for the pages we want, or
following the links from one page to another, we can
normally rely on these web-based programs to give
us the most relevant results for our query.

Given how much we use search engines, it’s
important to use them effectively and efficiently,
to show some discernment in deciding how far a
particular page can be trusted, and to have some
grasp of the algorithms that underpin them.

In order for Bing or Google to be able to respond
to a search query, they use their index of the Web.
A search engine builds its index by using specially
written programs called ‘web crawlers’. The
web crawlers create a huge copy of the publicly
accessible bits of the Web (called a cache) which is
stored on the search engine’s servers.

When a new or updated copy of a web page is added
to the cache, an entry for the page will be added to,
or updated in, the search engine’s index of the Web
for each of the words on the page (typically ignoring
small, common words like ‘and’, ‘the’ and so on). The
web crawlers continue to build and update the cache
by following all the hyperlinks in the page, requesting
and making copies of those pages too, adding or
updating index entries for them, and following the
links on those pages too. And so on.

So when we type in a keyword such as ‘dog’ into a
search engine, it consults the index and returns a list
of all the web pages on which that keyword appears.
Typing in several keywords, e.g. ‘dog’ and ‘bowl’
would only return pages with both of these keywords,
which helps to narrow down the set of results.

The really clever bit about web searches is not the
list of results, but the right rank order the results
are put into. How do the search engine algorithms
decide what to put top of the list?

How does a search engine work?

How are search results ranked?

www.codecademy.com/
http://learn.shayhowe.com/
https://learn.playto.io/html-css/lesson/0
https://learn.playto.io/html-css/lesson/0
https://thimble.webmaker.org/
http://www.w3schools.com/
https://goggles.webmaker.org/

41

Computer networks

Google’s founders, Larry Page and Sergei Brin,
recognised that the key to determining how relevant
a particular result was likely to be lay in the links
between other pages and the result. They realised
that a high quality page is a page that has lots of
links pointing to it from other web pages, particularly
if they too were high quality results. This is shown
in the illustration below, where the larger the circle,
the higher the quality of the web page.

The cached and indexed copy of the (publicly accessible)
Web on the servers of search engines also includes
the links between them. This allows Page and Brin’s
PageRank algorithm to work out which pages are
considered the highest quality to other web developers
(as they add links to those into their own content). Thus,
for many queries the Wikipedia entry will often be at the
top of, or at least high up, the results list, not because
of its accuracy or authority, or even because people
click on this more than other results, but because lots of
the other high quality search results link to it.

The actual algorithms that search engines use can be
very complicated and are frequently tweaked to keep
one step ahead of the ‘search engine optimisation’
(SEO) industry that tries to improve the ranking for
its clients’ pages. These days, the ranking of results is
typically personalised: based on location, the history
of what the user’s searched for and clicked on before,
and close on 200 other factors or ‘signals’.

When teaching pupils about how search engines work,
point out the ‘sponsored’ results which are shown
above or to the side of those generated using this
relevance algorithm. The sponsored results are also
algorithmically generated, based on the keyword,
some quality measure for the advert, the page it
points to and often your search history. They’re
placed on a ‘pay per click’ basis: the search engine
doesn’t charge for showing the advert, but the
advertiser pays when you click on it, so it’s in their
interests to only show the most relevant adverts here.

The mechanics will vary from one search engine to
another, but a good search engine should also: filter
out explicit content automatically, allow you to search
within a particular site, allow results to be filtered by
their location (e.g. just the UK) and by date range (e.g.
just pages created or edited in the last year). Some
search engines even allow results to be filtered by
reading level, for example restricting the results to
those written using shorter words or less complex
sentences.

 Classroom activity ideas

⚫⚫ Encourage pupils to use search engines for
independent or guided research projects. Get
pupils to experiment with the effect that adding in
additional keywords or searching for phrases (by
putting quotation marks around the phrase) has on a
set of results.

⚫⚫ Demonstrate, and ask pupils to use, some of the
more advanced search features, such as filtering by
date and reading level. Show pupils how they can
view the cached copy of a web page (for both Google
and Bing this is hidden under the green drop-down
next to the URL on the results page).

⚫⚫ Read through the Digital Schoolhouse notes on a
simulation of how a search engine works, based on
Google engineer Doug Aberdeen’s presentation at
the 2012 CAS Conference (see Further Resources
below). Print off the resources and run this as an
activity with your class.

 Further resources

⚫⚫ Doug Aberdeen’s simulation from the CAS
conference, available at: www.computingatschool.
org.uk/index.php?id=aberdeen.

⚫⚫ Useful list of advanced search keywords in Bing,
available at: http://onlinehelp.microsoft.com/en-
us/bing/ff808421.aspx.

⚫⚫ Short animated presentation ‘How Search Works’
by Matt Cutts, available at: www.youtube.com/
watch?v=BNHR6IQJGZs.

⚫⚫ Peter Dickman’s lecture ‘How Google Search
Works’, available at: www.youtube.com/
watch?v=C8v7AM1o7uM.

⚫⚫ Digital Schoolhouse simulation of how a
search engine works: http://community.
computingatschool.org.uk/files/3874/original.pdf.

⚫⚫ Eli Pariser’s talk ‘Beware online “filter bubbles”’
(how individually focused our search results are),
available at: www.ted.com/talks/eli_pariser_
beware_online_filter_bubbles?language=en.

http://www.computingatschool.org.uk/index.php?id=aberdeen
http://www.computingatschool.org.uk/index.php?id=aberdeen
http://onlinehelp.microsoft.com/en-us/bing/ff808421.aspx
http://onlinehelp.microsoft.com/en-us/bing/ff808421.aspx
http://www.youtube.com/watch?v=BNHR6IQJGZs
http://www.youtube.com/watch?v=BNHR6IQJGZs
http://www.youtube.com/watch?v=C8v7AM1o7uM
http://www.youtube.com/watch?v=C8v7AM1o7uM
http://community.computingatschool.org.uk/files/3874/original.pdf
http://community.computingatschool.org.uk/files/3874/original.pdf
http://www.ted.com/talks/eli_pariser_beware_online_filter_bubbles?language=en
http://www.ted.com/talks/eli_pariser_beware_online_filter_bubbles?language=en

42

QuickStart Computing

How can you use
computers to work
with others?

There’s more to computing than computer science.
With the use of digital technology such as smartphones
and the internet, it’s hard to think of any sphere of
life which hasn’t been changed by the near ubiquitous
nature of communication technology.

The national curriculum seeks to ensure that all
pupils learn about some of the opportunities that
networks offer for communication and collaboration.

Young people are usually comfortable using a range
of digital technologies to communicate with one
another (although you should not presume that
they act safely and responsibly when doing so: see
Safe and responsible use, pages 46–49). They are
perhaps less skilled in using technologies to work
collaboratively on shared projects.

Different technologies work with different-sized groups:

One-to-one
email
video calls
instant messaging

One-to-many
blogging
personal website
publishing on YouTube
podcasting
posting to social media

Many-to-one
searching the web
watching YouTube
browsing social media

Many-to-many
discussion forums
Wikipedia

We need to develop pupils’ understanding of these
technologies (and some critical discernment
about their use) rather than just their ability to
use any particular platform. The implementation
of communication technology will change, but
underlying principles are likely to remain the same.

Yes! Many schools are now using digital
communication and collaboration technologies as
part of their day-to-day work.

Again, yes! The internet can provide many opportunities
for pupils in one class to communicate with or work
collaboratively with pupils in another class.

There’s so much that can be gained through even
a simple, email based eTwinning project. Think of
the scope for exploring ‘contrasting localities’ in

Can pupils communicate
with other schools?

Can communication
technology be embedded
across the whole curriculum?

Communication
and collaboration

Learning about
wikis

43

Communication and collaboration

geography, for practising other languages, or looking
at a period in history from a global perspective.

These days, it’s easy for a teacher to set up a class
blog, perhaps as open access so that a child’s work
can reach an audience, potentially, of close on three
billion others. Blogs are also a great way to share
what’s happening in your class with your pupils’
parents and with other teachers.

Blogs can be used as a basis for partnership
projects with another class or group of classes,
taking turns to respond to work that’s posted (as
in David Mitchell’s QuadBlogging® projects: see
Further resources). However, it’s really important
that comments posted to a class or school blog are
moderated by a teacher before they’re seen by pupils.

Blogging can be easily used to record and share
pupils’ work in computing. Even without blogging,
pupils could share their programming work through
community sites for tools such as Scratch and Kodu
(taking care that all involved observe the terms and
conditions that apply to these platforms).

The internet makes it easy for pupils to work
collaboratively online, just as they have always been
able to do in class.

Web-based platforms such as Office 365 mean that
pupils can work on files together, either by inviting
comment and review from others, or through real-
time collaboration. The efficiency with which joint
projects can be undertaken and reviewed can make
this a very exciting mode of work.

Teachers and pupils alike will be aware of the
collaborative nature of Wikipedia. This can provide
a good opportunity for pupils to become more
discerning in evaluating digital content, and indeed
to correct errors or add content to Wikipedia when
they can. The Simple English Wikipedia is far less
‘complete’ than the main edition, and so it’s practical
for primary classes to ‘adopt’ pages here, editing
or monitoring these for other users. Alternatively,

teachers can set up their own wiki for their class,
using one of a number of online tools.

Online collaborative working is a very important part
of software development. Pupils themselves can get
some experience in collaborative software development
through the re-mix feature built into platforms such as
Scratch, TouchDevelop and Kodu.

It’s important to establish an agreed set of rules
for any online activities. Pupils need to be aware
that terms and conditions do apply to them, even if
they are rarely written in accessible language. You
should brief pupils on what is expected of them. The
key stage 2 programme of study expects pupils to
recognise acceptable and unacceptable behaviour.

It’s helpful to have a set of guiding principles here:
pupils should behave online just as they would
offline. This would include:

⚫⚫ not being deliberately hurtful
⚫⚫ taking care of shared resources
⚫⚫ being prepared to stand up for doing the right
thing, even if it’s unpopular

⚫⚫ not talking to strangers
⚫⚫ being honest.

Explain to pupils that most online systems automatically
log the activities that take place in them: someone (or
something) is watching what they do online!

 Further resources

⚫⚫ eTwinning: connect with classes across Europe,
available at: www.eTwinning.net.

⚫⚫ 100 Word Challenge: carry out and share short
literacy projects, available at: http://100wc.net/.

⚫⚫ Quadblogging®: collaborative blogging in groups
of four classes across the world, available at:
http://quadblogging.com/.

⚫⚫ Simple English Wikipedia, available at: http://
simple.wikipedia.org/wiki/Main_Page.

⚫⚫ Wikipedia: Five pillars: the guiding principles
behind Wikipedia, available at: http://en.wikipedia.
org/wiki/Wikipedia:Five_pillars.

⚫⚫ Wikispaces Classroom: creating wikis in school,
available at: www.wikispaces.com/content/
classroom.

How can pupils work
collaboratively?

What audience can
pupils reach?

What ground rules
should we establish?

http://www.eTwinning.net
http://100wc.net/
http://quadblogging.com/
http://simple.wikipedia.org/wiki/Main_Page
http://simple.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Wikipedia:Five_pillars
http://en.wikipedia.org/wiki/Wikipedia:Five_pillars
http://www.wikispaces.com/content/classroom
http://www.wikispaces.com/content/classroom

44

QuickStart Computing

Can we teach our
old ICT topics?

The answer to this is yes! There are few, if any, topics
from the old ICT curriculum that don’t appear in the
new computing curriculum.

At key stage 1 pupils should be taught to: ‘use
technology purposefully to create, organise, store,
manipulate and retrieve digital content’.

At key stage 2 pupils should be taught to: ‘select, use
and combine a variety of software (including internet
services) on a range of digital devices’. They design
and create digital content as well as programs and
systems, and they accomplish given goals, including
‘collecting, analysing, evaluating and presenting data
and information’.1

See pages 50–51 for more information on reusing old
ICT units when planning a computing scheme of work.

David Jonassen and others coined the term
‘meaningful learning’. They were thinking particularly
about learning activities that involved using
technology, but the principles can be applied more
broadly. Jonassen’s list2 was:

⚫⚫ active: pupils should do something
⚫⚫ constructive: pupils should make something
⚫⚫ intentional: pupils should have some say in what
they do or how they accomplish something

⚫⚫ authentic: link to pupils’ direct experience,
including that of school: look for connections with
other areas of the curriculum

⚫⚫ cooperative: look for activities where pupils can
learn with and from one another.

For example, pupils could work together to create
and then analyse the results from an online survey of
other pupils about their views on the breadth of the
school’s curriculum, choosing for themselves how
they might present the results of their survey.

It’s important to find a balance between getting
things done in the time available and developing good
working habits for extended projects.

It’s probably best to mix a range of short activities
with more extended projects in which the processes of
planning, implementing, revising and evaluating are fully
explored. Working through the stages of a project in
detail is good experience for this sort of work elsewhere.

Look for ways to get pupils involved in managing
projects. This can include deciding what programs and
equipment they’ll need to use. The project management
skills involved in creative media work are very similar to
those required in software development.

The programmes of study are quite careful not to
specify particular digital media. Technology currently

Productivity
and creativity

How can we make ICT activities
more meaningful for pupils?

How should pupils go
about project work?

What digital tools should
pupils work with?

2 Jonassen, D. H. et al., Meaningful Learning with Technology (Upper
Saddle River NJ: Pearson, 2008).

1 National Curriculum in England, Computing Programmes of Study
(Department for Education, 2013).

45

Productivity and creativity

available in most schools can be used for work
across a very wide range of media including: text,
images, sound, animations, video and 3D. Ensure that
your pupils experience working across this full range.
A PowerPoint presentation is likely to include text
and images, and perhaps video, audio and animations.

Also aim to ensure that your pupils work on a variety
of devices and are able to draw on web-based
services, tablets, smartphones, digital cameras or
other systems rather than just using traditional
Windows PCs in their IT work.

Sir Ken Robinson defines creativity as ‘the process of
having original ideas that have value’3: creative work
should be original, and this should at least mean that
it’s a pupil’s own work, not something where they’ve
simply filled in a blank or copied something. Creative
work should also be of value: at the very least to the
pupils themselves, but also to a wider audience.

As well as originality and value, creative work also
implies that the pupil has made something. An emphasis
on creativity recognises how powerful the process of
making things for others is as a means to learning.

In the classroom, help pupils to become masters
of the software tools and digital devices they use,
helping them to develop confidence, competence and
independence. Then encourage them to use them,
playfully or experimentally, as a way of helping them
express their own insights and ideas.

The computing curriculum includes a requirement
for pupils to work with numerical data. This is an
important application of computer systems and
seems likely to become even more so in the future.

There’s much you can do to provide pupils with an
authentic experience of working with both small and
large datasets. Pupils can generate interesting sets
of data, or access large, open data repositories.

Online survey tools, such as Google Forms or
Excel Online, allow pupils to design and deploy
quick opinion polls or surveys, and then analyse,
evaluate and present the results. Choosing topics
of genuine interest to pupils, perhaps concerned

with aspects of school life, can make activities like
this much more engaging. Pupils should think about
privacy and ethical aspects of such surveys. Good
practice includes principles of informed consent and
anonymity; the latter is particularly important as
otherwise data protection legislation would apply
when processing personal data.

 Classroom activity ideas

⚫⚫ Carry out activities that draw on automatically
generated data, perhaps using sensors (e.g. a
Scratch script to record the level of sound in
class; see Further resources).

⚫⚫ Organise your pupils to analyse some big datasets
made publicly available on the internet. Help them
to use n-gram viewer to search for the occurrence
of words or phrases in the vast number of
books that Google have digitised and see how
this changes over time (see Further resources).
Analyse how search term popularity has changed
over time, e.g. look at the relative popularity of
searches for ‘Britain’s Got Talent’ and ‘The X
Factor’ over time in searches performed in the UK
using Google Trends (see below).

⚫⚫ Discuss the ethical implications of data
processing (i.e. what others do with our data). Ask
pupils to think about the detailed profile which
internet, email or search engine providers build up
through analysing each user’s activity, as well as
to what uses this information might be put.

 Further resources

⚫⚫ ‘A picture is worth a thousand words: what we
learned from 5 million books’ lecture, available at:
www.youtube.com/watch?v=5l4cA8zSreQ; see also
n-gram viewer: https://books.google.com/ngrams.

⚫⚫ Classroom sound monitor on Scratch, available at:
http://scratch.mit.edu/projects/20968943/.

⚫⚫ Google forms (www.google.co.uk/forms/about) or
Excel Surveys (http://blogs.office.com/2012/11/16/
excel-surveys/) for creating online surveys.

⚫⚫ Jonassen, D. H. et al., Meaningful Learning with
Technology (Upper Saddle River NJ: Pearson, 2008).

⚫⚫ Monte Carlo Method, available at: http://
en.wikipedia.org/wiki/Monte_Carlo_method.

⚫⚫ Robinson, K., Out of Our Minds – Learning to Be
Creative (Capstone, 2011).

⚫⚫ Using Google searches to predict flu: www.
youtube.com/watch?v=uEt8NuqBvPQ; see also
Google Trends: www.google.com/trends/.

3 Robinson, K., Out of Our Minds – Learning to Be Creative (Capstone, 2011).

What can pupils do with data?

How can creativity be taught?

https://www.youtube.com/watch?v=5l4cA8zSreQ
https://books.google.com/ngrams
http://scratch.mit.edu/projects/20968943/
http://www.google.co.uk/forms/about
http://blogs.office.com/2012/11/16/excel-surveys/
http://blogs.office.com/2012/11/16/excel-surveys/
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://www.youtube.com/watch?v=uEt8NuqBvPQ
http://www.youtube.com/watch?v=uEt8NuqBvPQ
http://www.google.com/trends/

46

QuickStart Computing

Safe and
responsible use

Keeping children
safe

How can we keep
children safe online?

Schools have a responsibility to keep pupils safe. The
Byron Review,1 Ofsted and others have emphasised
that the best way to achieve this is to teach pupils
how to keep themselves safe. Think of pupils cycling
to school: the pupils are exposed to risks which could
otherwise be avoided, but these risks are balanced
by a range of benefits (independence, health,
environment, road congestion, etc.). We do all we can
to outweigh the risks by teaching pupils to cycle well
and safely.

The new computing curriculum goes beyond just
teaching e-safety, and states that key stage 2 pupils
should be taught to:

use technology safely, respectfully and
responsibly; recognise acceptable/unacceptable
behaviour; identify a range of ways to report
concerns about content and contact.2

It’s important to recognise that these requirements
are a whole school responsibility. They should be
taught across the curriculum and become part of
the life of the school – this isn’t just something for
computing lessons.

By moving from a risk mitigation approach to
a values-based approach that promotes the
responsible use of technology, we can help develop
the pupils’ sense of moral responsibility and the
‘grit’ necessary for pupils to stand up for doing the
right thing. Pupils will then be far better at coping
with the challenges of secondary education and

adolescence, and far less likely to fall prey to the
more sinister aspects of the internet and other
technologies.

In The Byron Review Professor Tanya Byron outlined
three broad categories of risk which children are
exposed to through their use of digital technology:
content, contact and conduct.

What are the risks?

1 Byron, T., Safer Children in a Digital World: The Report of the Byron
Review (London: DCSF, 2008).
2 National Curriculum in England, Computing Programmes of Study
(Department for Education, 2013).

Commercial Aggressive Sexual Values

Content
(child as
recipient)

Adverts
Spam
Sponsorship
Personal info

Violent/hateful
content

Pornographic
or unwelcome
sexual
content

Bias
Racist
Misleading info
or advice

Contact
(child as
participant)

Tracking
Harvesting
personal info

Being bullied,
harassed or
stalked

Meeting
strangers
Being
groomed

Self-harm
Unwelcome
persuasions

Conduct
(child as actor)

Illegal
downloading
Hacking
Gambling
Financial scams
Terrorism

Bullying or
harassing
another

Creating and
uploading
inappropriate
material

Providing
misleading info/
advice

Table taken from Safer Children in a Digital World: The Report
of the Byron Review, p.16 (www.education.gov.uk/publications/
eOrderingDownload/DCSF-00334-2008.pdf). Contains public sector
information licensed under the Open Government Licence v2.0: see
www.nationalarchives.gov.uk/doc/open-government-licence/version/2/.

http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/

47

Safe and responsible use

Content
Children are naturally curious, and as teachers we
hope to develop that curiosity – to establish a life-
long love of learning. The Web has provided almost
instant access to a wealth of information that pupils
can access to further their learning and satisfy their
curiosity.

Schools have effective filters that minimise exposure
to inappropriate material in school, but this does not
prevent pupils accessing such material outside of
school, including on tablets or smartphones.

Both Bing and Google have safe-search modes (which
can be locked in place) and these help prevent pupils
from accessing particularly inappropriate content. In
addition, a number of organisations have developed
search engines targeted at children (for example
www.swiggle.org.uk/), often through a combination
of safe-search and custom-search tools in Google
search.

Encourage parents to use the safe search filters on
their search engine, and to request filtered internet
access at home and on mobile devices, explaining
how to do this and why it is a good idea.

But, even with filters in place, children may still
encounter content that concerns them. Establish
a ‘no blame’ culture in school so they feel they can
alert you, or their parents, to such content. Many
schools teach children to close the laptop, switch
off the monitor or turn the tablet over if they
find content they know they shouldn’t see or that
concerns them; again it’s worth explaining this to
parents and suggesting they do the same at home.

Byron identified commercialisation as another risk
associated with exposing pupils to the internet. As
teachers, we must help pupils to become discerning
and critical about commercial aspects of the content
they come across. For example, teach them about
spam in email and how this can be filtered semi-
automatically, as well as asking them to think about
what sort of algorithms might be used in doing so.

Talk to pupils about advertising on the web and
how this can be avoided through the use of browser
plugins such as AdBlock, as well as the difference
between sponsored and other results from search
engines. It’s also important to help pupils become
aware of the difference between altruistically
created content such as Wikipedia and many blogs,
and content created with a perhaps hidden or

implicit commercial purpose, e.g. apparently free
online services that are sustained through using the
user’s data to help target advertising.

Contact
The new curriculum requires that pupils are taught
who they can turn to if they have concerns over
contact online. In most cases, pupils should talk to
their parents or their teachers about such contact:
if pupils report such concerns to you, this is likely to
be covered by your safeguarding policy, so make sure
you follow this carefully. Sometimes pupils might
be too embarrassed to turn to either you or their
parents, so it’s worth introducing them to ChildLine
and, in the case of key stage 2 pupils, CEOP (see
Further resources).

Traditionally e-safety work in schools has included
clear advice to children on not sharing personal
information online. The curriculum includes this at
key stage 1. Online privacy is an increasing matter
of concern and there are broader issues here
than ‘stranger danger’. Pupils should be aware of
their ‘digital footprint’, the data about them that
is created by deliberately sharing content and
through the automatic logging of all online activity.
Whilst such logs are kept securely, many people are
concerned about the uses to which such data could
be put.

 Classroom activity ideas

⚫⚫ Challenge older pupils to consider how algorithms
can be designed to filter search results from a
search engine to make them safe for children.

⚫⚫ Ask older pupils to think about the long-term
implications of the data trails they leave behind
them when they search the internet. Ask them
to discuss: ‘Who do you want to keep your data
private from?’ (From internet predators? From
future employers? From the providers of search,
internet and email services? From advertisers?
From the school network manager? From
government agencies?)

Conduct
The curriculum at key stage 1 requires that pupils
learn to use technology ‘respectfully’. At key stage
2 this is extended to ‘responsibly’, and pupils should
also learn to recognise acceptable and unacceptable
behaviour. Supporting children’s moral development
is a vital part of primary education, as well as a

http://www.swiggle.org.uk/

48

QuickStart Computing

statutory requirement for a school’s curriculum
and, as part of ‘spiritual, moral, social and cultural
development’, an element of all Ofsted inspections.

Lawrence Kohlberg’s stages of moral development3

offers one model for thinking about this:

1.	Obedience and punishment orientation (How can I
avoid punishment?)

2.	Self-interest orientation (What’s in it for me?)
3.	Interpersonal accord and conformity (The good

boy/girl attitude)
4.	Authority and social-order maintaining orientation

(Law and order morality)
5.	Social contract orientation (Do unto others…)
6.	Universal ethical principles (Principled conscience)

Under this model, we would hope to see pupils taking
increasing responsibility for their own moral and
ethical decisions and behaviour whilst at primary
school. If schools take moral education seriously,
many aspects of pupils’ inappropriate conduct
using technology can perhaps be avoided, or their
consequences reduced.

Cyber-bullying
Even in primary schools, cyber-bullying is a common
problem. Whilst this is more likely to happen outside
of school, it’s common for both bully and victim to
be members of the same class or school and the
cause and consequences may often be connected
to school. As with bullying in general, a clear zero
tolerance message is vital, together with a culture
in which this can be reported in the knowledge that
swift and effective action will follow. Alongside this,
it’s worth building up pupils’ resilience to off-hand,
unintentionally hurtful remarks from others and
some recognition that not every online disagreement
or critical comment constitutes bullying.

Copyright
There are generous exemptions from much copyright
legislation for clearly specified educational use, but
it’s still important to teach and show best practice in
the use of copyright material. This includes children
(and teachers!) properly acknowledging the source of
content and respecting any associated licence terms.

Creative Commons (see Further resources) provide
a range of licences that allow those who create work
to license it for re-use under a range of different
conditions. You can teach pupils about this approach to
sharing online and show them how they can search for,
acknowledge and re-use Creative Commons licensed

content in their own work. Both Google and Bing image
search allow results to be filtered to show just images
that have been licensed in this way.

Pupils own the copyright in their own work including
the work they produce in school. As teachers, we
should respect this by seeking permission from
pupils and their parents before publishing pupils’
work online. Asking parents to license this use of
their children’s work might seem over the top, but
it’s important that pupils learn about their rights as
well as their responsibilities.

Terms and conditions
It’s important that pupils and teachers respect the
terms and conditions of any websites or other online
services that they use. The terms and conditions of
most online services run to many pages, but when
signing up for new services, or asking pupils to do so,
it’s well worth checking through the sections on any
age-restrictions as well as those on copyright and
data privacy. US-based companies are required to
abide by American COPPA (Children’s Online Privacy
Protection Act) legislation, which prevents their
storing personal data on under 13s without parental
consent. Thus, many US-based internet services
prohibit under 13s from using the service. Primary
school pupils using these services would be doing so
without the operators’ permission, which might be
considered in breach of the UK Computer Misuse Act.
Some services, including Office 365 and Google Apps
for Education, allow schools to create accounts on
behalf of children. Other websites, such as Scratch,
allow teachers to create multiple accounts in their
own name and share these with pupils.

Passwords
As more and more aspects of pupils’ learning and life
are mediated through online systems, it’s important
that they learn to protect their own online identity
and respect the online identity of others. The sooner
pupils can memorise and type in their own password
(even a simple, short one) the better. Later on,
encourage pupils to use long passwords that can’t
easily be guessed (e.g. CorrectBatteryHorseStaple),
to use different passwords for different sites
or services and to change passwords regularly.
Discourage pupils from sharing passwords with one
another (as this is usually their only way to prove
who they are in any online system) or with their
parents; many difficulties could arise through one
parent impersonating their son or daughter in an
otherwise secure ‘walled garden’ environment such
as a school VLE or learning platform.

3 Kohlberg, L., Essays on Moral Development: Vol. 2, The Psychology of
Moral Development (Harper & Row, 1984).

49

Safe and responsible use

Time to turn off
Finally, discuss with your pupils the opportunity
cost associated with screen time. Time spent using
a computer is time not spent doing other things,
such as reading a (paper-based) book, learning a
musical instrument, playing in a team and socialising
face-to-face with family and friends. Whilst digital
technology is seen by many as transformative of so
many aspects of learning and life, many would count
it a great shame if it came to dominate childhood to
a greater extent than it already has. Helping children
to become more discerning users of technology,
knowing when it would be useful, and when it might
be more of a distraction, is perhaps also one of our
responsibilities as teachers.

 Further resources

⚫⚫ Byron, T., Safer Children in a Digital World: The
Report of the Byron Review (DCFS, 2008), available
at: http://webarchive.nationalarchives.gov.
uk/20130401151715/http://www.education.
gov.uk/publications/eOrderingDownload/DCSF-
00334-2008.pdf.

⚫⚫ Childnet’s SMART rules: www.kidsmart.org.uk/
beingsmart/.

⚫⚫ Creative Commons, for information and
free licences to use, available at: http://
creativecommons.org/.

⚫⚫ ‘Digital Literacy & Citizenship from the South
West Grid for Learning’, teaching resources,
available at: www.digital-literacy.org.uk/Home.
aspx.

⚫⚫ Ofsted: ‘Inspecting safeguarding in maintained
schools and academies – Briefing for section 5
inspections’, available at: www.ofsted.gov.uk/
resources/inspecting-safeguarding-maintained-
schools-and-academies-briefing-for-section-5-
inspections.

⚫⚫ Thinkuknow.co.uk (CEOP), information and
teaching resources for keeping children safe
online, available at: www.thinkuknow.co.uk/
Teachers/.

⚫⚫ UK Safer Internet Centre, for information
and teaching resources, available at: www.
saferinternet.org.uk.

⚫⚫ UNCRC (United Nations Convention on the Rights
of the Child), for information and training on
children’s rights, available at: www.ohchr.org/en/
professionalinterest/pages/crc.aspx.

http://webarchive.nationalarchives.gov.uk/20130401151715/http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://webarchive.nationalarchives.gov.uk/20130401151715/http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://webarchive.nationalarchives.gov.uk/20130401151715/http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://webarchive.nationalarchives.gov.uk/20130401151715/http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://www.kidsmart.org.uk/beingsmart/
http://www.kidsmart.org.uk/beingsmart/
http://creativecommons.org/
http://creativecommons.org/
http://www.digital-literacy.org.uk/Home.aspx
http://www.digital-literacy.org.uk/Home.aspx
http://www.ofsted.gov.uk/resources/inspecting-safeguarding-maintained-schools-and-academies-briefing-for-section-5-inspections
http://www.ofsted.gov.uk/resources/inspecting-safeguarding-maintained-schools-and-academies-briefing-for-section-5-inspections
http://www.ofsted.gov.uk/resources/inspecting-safeguarding-maintained-schools-and-academies-briefing-for-section-5-inspections
http://www.ofsted.gov.uk/resources/inspecting-safeguarding-maintained-schools-and-academies-briefing-for-section-5-inspections
http://www.thinkuknow.co.uk/Teachers/
http://www.thinkuknow.co.uk/Teachers/
http://www.saferinternet.org.uk
http://www.saferinternet.org.uk
www.ohchr.org/en/professionalinterest/pages/crc.aspx
www.ohchr.org/en/professionalinterest/pages/crc.aspx

50

QuickStart Computing

Planning
guidance

Planning a
scheme of work

How do you plan a
scheme of work?

It’s sensible to establish a clear overall structure
to your computing planning. This will help teachers
and pupils find their way around the new curriculum
and give some sense of continuity and progression
to your planning. The national curriculum themes of
computer science, information technology and digital
literacy (foundations, applications and implications)
are a good way to do this. Within each of these three
themes you should aim to develop units of work
that provide:

•• a broad and balanced coverage of computing for
each year group

•• clear progression of understanding, knowledge
and skills from one year to the next.

Many of your units might take the form of creative
projects, in which pupils master the ideas of the
curriculum through meaningful, practical activities.
Once you have a set of units, map these back to the
content of the programmes of study. Check that,
taken as a whole, your units adequately cover all the
content. If they don’t, make some changes.

Don’t see the curriculum as a limit to what you can
teach. Some schools include units on computer
hardware, touch-typing, cryptography or developing
and designing content for the Web in HTML.

A good scheme of work should be continually
developed as you assess pupils’ learning and both
you and they evaluate your teaching. This can be
thought of as part of a continuous cycle of iterative
development – ‘debugging’ units of work and looking
at how new features can be implemented.

Adapting your existing content
In the transition from ICT to computing, the emphasis
has shifted from skills in finding and presenting
information to understanding the processes and
applications of computation. Even so, don’t think you
have to throw away your old scheme of work. The
best units are very likely to be relevant to the new
computing curriculum, although you’ll probably find
you need to make room for new activities that:

•• develop pupils’ programming skills
•• focus on computational thinking
•• develop pupils’ understanding of networks
including the internet.

Adopting published schemes of work
Don’t feel that you have to write your own scheme
of work for computing. There are plenty of published
schemes already available. Examples include:

•• commercial schemes: e.g. Switched on
Computing (Rising Stars), 100 Computing Lessons
(Scholastic) and Fantastict Computing Framework
(Fantastict).

•• local authority schemes: e.g. Bury, ‘Bury
Primary Computing Solution’; Somerset,
‘A Computing Curriculum for Primary Learners’
and Cambridgeshire, ‘The Cambridgeshire
Progression in Computing Capability Materials’
(see Further resources).

•• schemes by individual teachers: some of
which have been shared freely through the
CAS Community site: e.g. those by Phil Bagge,
Matthew Wimpenny-Smith and Jon Chippindall
(see Further resources).

You can choose to adopt or adapt these, taking into
account the resources available, the interests and
enthusiasms of you, your colleagues and pupils,
and your school’s approach to cross-curricular or
integrated topics.

51

Planning guidance

Guidance from Ofsted
In the past, Ofsted has provided detailed guidance
on inspecting a school’s ICT curriculum. The lead HMI
for computing and e-safety, David Brown, gave some
indications of his views on a good or outstanding
computing curriculum in a presentation in July 2014
(see Further resources). It’s well worth considering
his expectations when planning or adapting a scheme
of work. He suggested the following:

-	 the curriculum is broad and balanced with all
three computing strands covered well for all
pupils, in computing lessons and/or across the
school curriculum

-	 the contexts in which computing is taught are
relevant to pupils’ lives and reflect the increasing
use of computing in the world of industry

-	 pupils are expected to use their computing
knowledge, skills and understanding in realistic
and challenging situations

-	 pupils have comprehensive knowledge and
understanding of how to stay safe when using new
technologies

-	 rigorous curriculum planning ensures the subject
makes an outstanding contribution to pupils’
spiritual, moral, social and cultural development.1

Don’t assume that the conventional ‘three-part’
lesson must be followed. Often in computing pupils
will be learning through making things and it’s helpful
to give longer periods of time for such projects. Not
all lessons need to be about using a particular bit
of software to do something. Even where pupils
are learning to use new software, it can be worth
starting with a discovery phase. They can then share
their discoveries with one another, but make sure
you correct any misconceptions.

Unplugged activities
Elements of the curriculum, particularly logical
reasoning, algorithms, decomposition or how
networks work, can be addressed without a
computer, using pencil and paper or role-play
activities. Both Barefoot Computing and CS
Unplugged (see Further resources) have excellent
activities for developing understanding rather than
just practising coding skills.

Computational thinking should be embedded through
the computing curriculum (see pages 6–17).

Differentiation
Prior learning can vary quite widely across a class.
Collaborative group work or paired programming (or
other) exercises provide opportunities for pupils to
teach new things to one another.

Allow enthusiastic pupils the autonomy (and critical
support) to set their own challenges. For example,
if some of your pupils are already adept at coding in
Scratch, set them the challenge of coding the same
algorithm in another language.

Think about inclusion.
•• Is the task chosen so that all pupils’ enthusiasm

can be engaged and you’ve avoided issues about
which some pupils might be particularly sensitive?

•• How can you make appropriate adaptations for
SEN/D or EAL pupils? Assistive technology can
help with SEN/D, as can using an icon-based rather
than text block-based programming environment:
some dyslexic pupils are likely to find Kodu more
accessible than Scratch for this reason.

•• How can you help pupils who do not have access
to digital technology at home become more
confident and independent in computing?

 Further resources

•• Barefoot Computing, teaching resources,
available at: http://barefootcas.org.uk/ (free, but
registration required).

•• Computing At School, community site
resources, available at: http://community.
computingatschool.org.uk/resources.

•• Computing At School (CAS) Include: Computing
Science for All, available at: http://casinclude.org.uk/.

•• CS Unplugged, free activities and resources,
available at: http://csunplugged.org/.

•• ICTdotcom, ICT and Computer Planning by
Matthew Wimpenny-Smith, available at:
http://mwimpennys.primaryblogger.co.uk/
uncategorized/ict-and-computing-planning/.

•• Junior Computer Science, resources by Phil
Bagge: www.code-it.co.uk/.

•• Sheffield ILS eLearning Team ‘SEN Computing
Professional Learning Community’, available at:
http://sencomputing.wikispaces.com/.

•• Somerset County Council ‘A Computing
Curriculum for Primary Learners’, available at:
http://bit.ly/1d1P2OK.

•• The ICT Service ‘Cambridgeshire Progression in
Computing Capability Materials’, available at:
www.ccc-computing.org.uk/.

How should we plan a
computing lesson?

1 Brown, D., Ofsted National Lead for Computing, ‘Inspecting
computing’ slides (Barefoot Computing Conference).

http://barefootcas.org.uk/
http://community.computingatschool.org.uk/resources
http://community.computingatschool.org.uk/resources
http://casinclude.org.uk/
http://csunplugged.org/
http://mwimpennys.primaryblogger.co.uk/uncategorized/ict-and-computing-planning/
http://mwimpennys.primaryblogger.co.uk/uncategorized/ict-and-computing-planning/
http://www.code-it.co.uk/
http://sencomputing.wikispaces.com/
http://bit.ly/1d1P2OK
http://www.ccc-computing.org.uk/

52

QuickStart Computing

What makes a good
computing lesson?

There’s a wealth of learning theory, academic
research and professional practice, including
Ofsted’s expectations, that we can draw on to
help address this crucial question. Good practice
in computing is unlikely to be different from good
practice across the primary curriculum. We can draw
on what’s effective in other subject areas which have
much in common with computing: science, design and
technology, art and design and music teaching.

Educational theory can be mined for insights into
how a new subject like computing might be taught.
The pragmatic teacher is likely to draw on a blend of
these approaches.

⚫⚫ Experimenting: Provide pupils with a chance to
explore and tinker with new software or hardware
when they first encounter it, so they can figure
out their own mental model for how it works. This
can be particularly effective with younger pupils.

⚫⚫ Making: A lot can be learnt through the process
of making things to show to or share with others.
This might be computer code, but it might also
be PowerPoint presentations, web pages, edited
video, digital photographs, etc.

⚫⚫ Discussion: Make the most of pupils’ different
insights, experiences and backgrounds by allowing
them to share their ideas with one another and
with others. Paired programming activities in

class and online discussion forums are just two
ways to facilitate this.

⚫⚫ Connecting: Learning from others need not be
limited to the classroom: encourage pupils to
explore others’ solutions to problems on the Kodu
or Scratch community sites, for example, or to
search online for solutions to problems.

⚫⚫ Direct instruction: For some ideas in computing,
the traditional, direct instruction approach can
work well. Complex ideas such as variables, how
the internet works or how search engines operate
could be learnt using discovery-based approaches,
but direct teaching is likely to be more effective.

⚫⚫ Practise: Don’t assume that once pupils have
demonstrated they can do something or
understand an idea that their learning is secure.
Provide opportunities for them to practise applying
their skills, knowledge and understanding.

Ofsted’s expectations of good or outstanding
lessons are the same irrespective of subject, and are
outlined in the current edition of the School inspection
handbook (Ofsted 2014).

The School inspection handbook makes clear the
importance of inclusion, as discussed in relation to
planning for computing (page 51). Thus, for teaching
to be considered outstanding:

almost all pupils currently on roll in the school,
including disabled pupils, those who have special
educational needs, disadvantaged pupils and the
most able, are making sustained progress that leads
to outstanding achievement.1

In his presentation on inspecting computing, David
Brown made some suggestions for what good or
outstanding teaching in computing might look like.

What approaches are useful
for teaching computing?

Teaching Approaches for
teaching computing

What does Ofsted expect?

53

Teaching

He recommended that:
-	 it is informed by excellent subject knowledge and

understanding of continuing developments in
teaching and learning in computing

-	 it is rooted in the development of pupils’
understanding of important concepts and
progression within the lesson and over time; it
enables pupils to make connections between
individual topics and to see the ‘big picture’

-	 lessons address pupils’ misconceptions very
effectively; teachers’ responses to pupils’
questions are accurate and highly effective in
stimulating further thought

-	 teachers use a very wide range of innovative and
imaginative resources and teaching strategies
to stimulate pupils’ active participation in their
learning and secure good or better progress
across all aspects of the subject.2

When commenting on pupils’ achievement in
computing, David Brown suggested that this would
be good or outstanding if:

-	 pupils demonstrate excellent understanding of
important concepts in all three strands of the
computing curriculum and are able to make
connections within the subject because they have
highly developed transferable knowledge, skills and
understanding

-	 pupils show high levels of originality, imagination,
creativity and innovation in their understanding
and application of skills in computing

but would be regarded as inadequate if:
-	 pupils rarely demonstrate creativity or originality

in their use of computing but seem confined to
following instructions.3

Look for ways in which pupils can take their learning
further. Here are just a few examples.

⚫⚫ Code Club (see Further resources) run after-school
coding clubs in around 2,000 primary schools and
make their activities available for others to use
as they wish. Typical clubs are run by volunteers,
although teacher involvement is also needed. Code
Club provide an introductory Scratch programming
course and a more advanced Scratch coding course,

as well as courses that introduce the basics of
HTML coding for web-development and Python
programming.

⚫⚫ Many schools have found it helpful to institute
a system of pupil ‘digital leaders’, who can help
teachers and other pupils with some limited tech
support, as well as being the first to try out new
software and hardware and even advising on the
school’s technology policies. Typically, schools
run an open application process for these roles,
inviting potential digital leaders to set out in
writing why they would be well suited to the role.

⚫⚫ Activities such as CoderDojo and Young Rewired
State (see Further resources) rely on parental
support for primary aged pupils and involvement
from those working in the software industry.

⚫⚫ Some primary pupils might, with parental permission,
become active participants in online communities,
such as those around Kodu, Scratch or even YouTube
and blogging. Others might pursue more advanced
coding skills, perhaps using online interactive
tutorials such as those offered by Codecademy (see
Further resources), or teaching themselves how to
develop for Windows Phone, Android or iOS.

Try to find ways in which this sort of advanced
learning beyond school can be brought in to class and
shared with other pupils.

 Further resources

⚫⚫ David Brown (Ofsted) ‘Inspecting computing’
(Barefoot Computing Conference) slides.

⚫⚫ Codecademy teaching resources, available at:
www.codecademy.com/schools/curriculum.

⚫⚫ Code Club network of after-school coding clubs,
available at: www.codeclub.org.uk/.

⚫⚫ CoderDojo network of free computing programming
clubs, available at: https://coderdojo.com/.

⚫⚫ Cousin, G., ‘An introduction to threshold concepts’
(2006), available at: www.et.kent.edu/fpdc-db/
files/DD%2002-threshold.pdf.

⚫⚫ Hattie, J., Visible Learning for Teaching: Maximising
Impact on Learning (Routledge, 2009).

⚫⚫ Papert, S., Mindstorms: Children, Computers, and
Powerful Ideas (Basic Books, 1980).

⚫⚫ The Sutton Trust Education Endowment Foundation
Teaching and Learning Toolkit, for information
on research and guidance on using resources
for disadvantaged pupils, available at: http://
educationendowmentfoundation.org.uk/toolkit/.

⚫⚫ Young Rewired State community of young digital
makers, available at: www.yrs.io/.

What about beyond
the classroom?

1 School inspection handbook (Ofsted, 2014).
2 Brown, D., Ofsted National Lead for Computing, ‘Inspecting
computing’ slides (Barefoot Computing Conference).
3 ibid.

http://www.codecademy.com/schools/curriculum
https://www.codeclub.org.uk
https://coderdojo.com/
http://www.et.kent.edu/fpdc-db/files/DD%2002-threshold.pdf
http://www.et.kent.edu/fpdc-db/files/DD%2002-threshold.pdf
http://educationendowmentfoundation.org.uk/toolkit/
http://educationendowmentfoundation.org.uk/toolkit/
http://www.yrs.io/

54

QuickStart Computing

How can we collect
evidence of learning?

When Ofsted reported on ICT in schools, assessment
came in for particular criticism. Assessing computing
can provide some particular challenges.
•	 It’s too easy to focus on the outcomes of a task at

the expense of assessing the learning that takes
place in the process.

•	 It’s too easy to focus on assessing pupils’ skills in
using particular software instead of assessing
their knowledge and understanding.

•	 If pupils have worked with a partner or in a group
to complete a project, how can you assess each
individual’s learning?

You can do much to meet these challenges and develop
robust approaches to assessment, so that you can form
a judgement about what individual pupils can do, know
and understand, as well as helping pupils themselves
reflect on how they’ve applied computational thinking.

Blogs for showcasing, reflection
and feedback
Probably, the most effective thing you could do is
to start a class blog. Ask pupils to use this to upload
the outcomes of their work and document the
computational thinking processes they worked through,
focusing on any challenges they overcame.

Blogs provide a way for pupils to get feedback through
the comments section. Invite pupils to respond to any
questions raised. You can create a tagging system so
you and your pupils can use their blog to track progress.
A blog begun in Year 1 and continued up to Year 6 would
provide rich evidence of both progress and attainment.

Other approaches
Naace suggest using an interview at the end of a
project. A pupil might explain the computational
thinking they used in solving a problem, but could
also reflect on what and how they have learnt.

There’s a place for formal testing in computing. In
programming work, code tracing and debugging
challenges are useful ways of assessing both specific
knowledge of a programming language as well as
logical reasoning and other problem-solving skills.

Evidence for pupils’ computational thinking will
be found in how they approach projects, but well-
designed questions might provide one way of
assessing this more directly. The Beaver Challenge
(see Further resources) is a series of online questions
assessing computational thinking.

The ‘Progression Pathways Assessment Framework’
is used by many for both planning and monitoring
progression in computer science. It was derived from
CAS’s original computer science curriculum and provides
detailed treatment of progression across six strands:

⚫⚫ algorithms
⚫⚫ programming and development
⚫⚫ data and data representation
⚫⚫ hardware and processing
⚫⚫ communication and networks
⚫⚫ information technology. 			

The authors, Mark Dorling and Matthew Walker, explain:
The progression through each strand of computing is
broken down into rows. The rows are colour coded (like
karate belts) to help the teacher to assess whether
students are showing competence at different levels
and recognise achievement or attainment.

Assessment Assessing and
tracking progress

How can we track progress?

55

Assessment

Schools can choose to assign arbitrary values
(levels) to the coloured rows if they would like to
use them with existing reporting systems.

The focus of this assessment framework is progression
through and across the strands of computing. If you
plan to use this assessment framework with your
existing assessment/reporting system then you can
agree the benchmark ‘level’ for the pupils entering
a particular key stage and assign the arbitrary
benchmark value (level) to the appropriate progression
statements for each strand.5

They recommend that primary teachers focus on the
badge statements from the Pink to Purple rows.

The old national curriculum levels have been removed
and not replaced. The statutory attainment target is
clear:

By the end of each key stage, pupils are expected to
know, apply and understand the matters, skills and
processes specified in the relevant programme of
study.6

Computing in the national curriculum: A guide for
primary teachers (see Further resources) outlines
an approach to assessment based on tracking
achievement of the individual statements from the
programmes of study. The advantage of a granular
method like this, similar to EYFS assessment, is
that it shows pupils, parents and teachers exactly
what has been achieved and what aspects of the
curriculum remain targets for subsequent work.

Evidence of attainment
Even just one Scratch script, such as this for
a duck shoot game: http://scratch.mit.edu/
projects/15907506/#editor, provides evidence of
attainment for the key stage 2 programme of study.

From the Scratch scripts themselves, we have
evidence of:

⚫⚫ write programs that accomplish specific goals
⚫⚫ use sequence in programs
⚫⚫ work with various forms of input (keyboard and
mouse in this case)

⚫⚫ design programs that accomplish specific goals
⚫⚫ design and create programs
⚫⚫ use repetition in programs (forever loop, two
different repeat until loops)

⚫⚫ simulate physical systems
⚫⚫ use selection in programs (if … then … else)
⚫⚫ work with variables (score).

If pupils had also explained how they’d solved the
problems, then you might also have evidence of a
number of the ‘logical reasoning’ statements.

SEN
Pupils with special educational needs working below
the level of the programme of study for their key stage
should be assessed using the P-scale statements, as
in the past. There’s much in these statements which
reflect emergent computational thinking.

Digital badges
Digital badges can provide a great way to record
and reward pupils’ attainment in computing. One
approach (used by Rising Stars with Makewav.es)
would be to have a badge for each of the bullet
points in the programme of study, with clear criteria
for each particular bullet point. If you’re using the
‘CAS Progression Pathways Assessment Framework’,
there are Makewav.es badges for these too.

 Further resources

⚫⚫ Bebras International Contest on Informatics and
Computer Fluency and Computational Thinking
Challenge, available at: www.bebras.org/ and
www.beaver-comp.org.uk/.

⚫⚫ Berry, M., Computing in the national curriculum: A
guide for primary teachers (Computing At School,
2013), available at: www.computingatschool.org.
uk/data/uploads/CASPrimaryComputing.pdf.

⚫⚫ Brennan, K. and Resnick, M., ‘New frameworks
for studying and assessing the development
of computational thinking’ (2012), available
at: http://web.media.mit.edu/~kbrennan/files/
Brennan_Resnick_AERA2012_CT.pdf.

⚫⚫ DfE (2014) P-scales: attainment targets for pupils
with SEN, available at: www.gov.uk/government/
publications/p-scales-attainment-targets-for-
pupils-with-sen.

⚫⚫ Dorling, M. and Walker, M., Progression Pathways
Assessment Framework (2014), available at:
http://community.computingatschool.org.uk/
resources/2324.

⚫⚫ Makewav.es badges for Progression Pathways,
available at: https://www.makewav.es/cas and
for the Attainment Targets, available at: https://
www.makewav.es/badges/18419/.

⚫⚫ Switched on Computing Scratch debugging
challenges, available at: http://scratch.mit.edu/
studios/306100/.

5 Progression Pathways Assessment Framework (Computing At School).
6 National Curriculum in England, Computing Programmes of Study
(Department for Education, 2013).

How can we assess attainment?

http://scratch.mit.edu/projects/15907506/#editor)
http://scratch.mit.edu/projects/15907506/#editor)
http://Makewav.es
http://Makewav.es
http://www.bebras.org/
http://www.beaver-comp.org.uk/
www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf
www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
https://www.gov.uk/government/publications/p-scales-attainment-targets-for-pupils-with-sen
https://www.gov.uk/government/publications/p-scales-attainment-targets-for-pupils-with-sen
https://www.gov.uk/government/publications/p-scales-attainment-targets-for-pupils-with-sen
http://community.computingatschool.org.uk/resources/2324
http://community.computingatschool.org.uk/resources/2324
https://www.makewav.es/cas
https://www.makewav.es/badges/18419/
https://www.makewav.es/badges/18419/
http://scratch.mit.edu/studios/306100/
http://scratch.mit.edu/studios/306100/

56

QuickStart Computing

Running CPD
sessions

This section provides guidance about delivering
computing CPD sessions. This guidance can be
used in conjunction with the two PowerPoint files
provided on the CD-ROM that accompanies the
toolkit.

Preparation
Advertising
Advertise to local primary schools that you are
offering two computing training sessions as part of
the rollout of QuickStart Computing. Use emails and
social media (e.g. Twitter), and your own personal
contacts at schools as well as local authorities.

Location
A local school which will allow the use of their
computing facilities is ideal. Failing that, any room
can be used as long as you have access to a laptop,
internet connection and data projector.

Refreshments
Ensure refreshments are provided for all your
attendees.

Timings
The outlines provided here assume two, three- to
four-hour CPD sessions, that would be held during
INSET; one at the start of a school term and the
second at the end. These sessions could be adapted
to fit into three twilight sessions after school.

Charging
The materials are free and must not be charged for.

Adapting content
Adapt the resources provided here for use with your
audience. For example, you may wish to:

•• deliver three CPD sessions, rather than two
•• focus on specific content, as requested by your
group

•• edit the PowerPoint presentations by adding your
own content, or deleting some of what’s there

•• swap the order of sections within the CPD
sessions.

It is important to be flexible when running the CPD
sessions – be prepared to drop certain activities if
attendees would benefit from spending more time on
a particular concept.

Tips and advice
•• Try to make sessions as interactive as possible by
including hands-on activities or group discussion
where all attendees are involved. Avoid long
periods of talking from the front; encourage
participation by asking questions.

•• The best way to learn to code is to code. A great
way to learn about the computing curriculum is to
plan some lessons and units of work together.

•• Share your enthusiasm for the subject.
•• Provide suggestions for what teachers should do
after the session has finished. Ensure you outline
a clear plan for what participants need to do
before the next session.

Welcome to QuickStart
Computing

57

Running CPD sessions

CPD Session 1
Resources

Welcome to QuickStart Computing

Session 1 presentation template

Skills and knowledge audit form (1 per
delegate)

Resources audit form (1 per delegate)

QuickStart handbooks (1 per delegate, either
hard copy or pdf files)

Hardware
•• Bee-Bot mat
•• Bread, butter, jam, knives, plates, napkins (enough
to make a jam sandwich)

•• Laptop per delegate with access to Scratch
2.0 online (or Scratch 2.0 installed). Ensure you
request this when sending invites

•• Data projector
•• Internet access and wifi information
•• Bee-Bot per group (ensure you request this when
sending invites)

•• Four-way extension cables for laptops are useful.

Welcome (5 mins)

•• Brief welcome
•• Wifi access information
•• Structure of the CPD session.

Why are we here? (10 mins)
•• Play the Welcome to QuickStart video, or give a
general introduction to the QuickStart content
(see User guide on page 4 of this handbook).
It’s worth emphasising that computing is more
about computational thinking and creativity than
‘coding’. Explain how computing is made up of
computer science, IT and digital literacy.

•• Time permitting, you may wish to play Simon
Peyton Jones’ TedEx talk about teaching
creative computer science: www.youtube.com/
watch?v=Ia55clAtdMs.

How CPD works (5 mins)
•• Refer to the QuickStart roadmap (see page 5 of
this handbook).

Subject knowledge and skills audit
(10 mins)

•• Ask attendees to fill in a knowledge and skills
audit form. You may find you need to explain some
of the vocabulary here.

•• Discuss which PoS statements attendees have
least confidence with.

Computational thinking (60 mins)
Introduction (10 mins)

•• With examples, discuss and define the key
computational thinking concepts and processes:
-	 logical reasoning (predicting and analysing)
-	 algorithms (making steps and rules)
-	 decomposition (breaking down into parts)
-	 patterns and generalisation (spotting and using

similarities)
-	 abstraction (managing complexity).

Activity: A jam sandwich algorithm (25 mins)
(See Classroom activity ideas on page 8 of this
handbook.)

•• Explain that in this session, attendees will be
writing an algorithm to make a jam sandwich.

•• You may wish to play the Introducing algorithms
video from the CD-ROM.

•• Ask teachers to split up into pairs and write an
algorithm for creating a jam sandwich.

•• Bring the group back together. Ask for a volunteer
to come to the front to make a jam sandwich,
following an algorithm provided by the group.

•• You can play Phil Bagge’s outtake video if you
wish: www.youtube.com/watch?v=leBEFaVHllE

•• Discuss what pupils might learn through such an
activity.

Activity: Guess my number (25 mins)
(See Classroom activity ideas on pages 11–12 of the
handbook.)

•• Explain the game to the group (see pages 11–12 of
this handbook).

•• Split attendees into groups and ask them to come
up with the most efficient way of guessing a
number from 1–1000, only asking questions that
can be answered with a ‘yes’ or ‘no’ answer.

•• Bring the group back together and ask one
member of each group to explain their method.

•• Test one or more of these methods, to see how
efficient they are.

•• Summarise the different algorithms that could

Session outline

http://www.youtube.com/watch?v=Ia55clAtdMs
http://www.youtube.com/watch?v=Ia55clAtdMs
www.youtube.com/watch?v=leBEFaVHllE

58

QuickStart Computing

be used to guess the number (random search,
sequential search and binary search) and emphasise
how a binary search is the most efficient algorithm.

•• You can demonstrate this as a Scratch
program: http://scratch.mit.edu/
projects/12976768/#editor.

•• Discuss what other problems this algorithm might
be used for (e.g. finding words in a dictionary, or
books in a library).

•• Discuss what pupils might learn from this activity.

B R E A K (1 5 m i n s)

Programming (60 mins)
Introduction (10 mins)

•• You may wish to play the Introduction to
programming video from the CD-ROM.

•• Explain the relationship between programming,
algorithms and code. Emphasise that computing
includes both, and that we see programming
as the best way to develop and practise
computational thinking.

•• Discuss and define the key programming concepts
of sequence, repetition, selection and variables
that are mentioned in the PoS.

Activity: Programming a Bee-Bot (25 mins)
Summary: Some simple programming exercises using
a Bee-Bot. (See Classroom activity ideas on page 21
of this handbook for examples.)

•• Split attendees into pairs/groups and ask them
to write a program to move the Bee-Bot from
one position to another (depending on the Bee-
Bot mats available). Ask them to record their
algorithm, predict what will happen, test and then
debug as necessary.

•• Provide instructions for a Bee-Bot that include an
error. Ask attendees to debug the program.

•• Bring the group back together and ask one pair to
highlight the bug and how they fixed it.

•• You can use the Scratch Bee-Bot simulator at
http://scratch.mit.edu/projects/20050141/#editor
if you wish.

•• Discuss what pupils might learn through an
activity like this.

Activity: Creating ‘crystal flowers’ in Scratch
(25 mins)

•• Ask participants to work out the algorithm and
then the program to draw a square.

•• Ask them to work out the algorithm and then the
program to draw a more complex shape.

•• Show attendees a Scratch script for creating a
crystal flower, such as http://scratch.mit.edu/
projects/39995570/#editor. Explain what each
part of the script does (reference repetition and
variables).

•• You can show the Python equivalent code if you’d
like and ask participants to spot the connections,
but emphasise that there’s no requirement for
text-based programming in the primary PoS.

•• Ask them to make some changes to this script to
see what happens.

•• Discuss what pupils might learn through this activity.

CPD action plan – breakout session
(10 mins)

•• Ask teachers to split into smaller groups of 2–3
and spend some time discussing:
-	how they plan to put into practice what they

have learned (i.e. running some of the activities
with pupils, creating a ‘crystal flower’ in
Scratch)

-	how they plan to deliver computing CPD to
their class teachers when they return to school
and what support they will need to do this (for
example, discuss with senior management team).

•• Ask each group to share their plans.

General discussion/questions (15 mins)
Allow the conversation to flow, but you might like to
use the following questions to facilitate a discussion.

•• How are teachers using computational thinking in
their jobs?

•• Can the group think of ways in which computational
thinking is used across the curriculum?

•• What challenges do the group expect with teaching
pupils to program Bee-Bots or in Scratch?

•• How can teachers best learn programming
themselves?

Conclusion and close (5 mins)
•• Reminder of follow-up session date.
•• Things to do before then:
-	finish knowledge and skills audit form
-	create a CPD action plan
-	start running internal CPD sessions.

http://scratch.mit.edu/projects/12976768/#editor
http://scratch.mit.edu/projects/12976768/#editor
http://scratch.mit.edu/projects/20050141/#editor
http://scratch.mit.edu/projects/39995570/#editor
http://scratch.mit.edu/projects/39995570/#editor

59

Running CPD sessions

CPD Session 2

Resources

Session 2 presentation template

•• Simple message slips for Activity 1 (see suggested
template in diagram on page 34 of handbook)

•• Resources for Activity 2: www.
computingatschool.org.uk/index.php?id=aberdeen

Hardware
•• Laptop
•• Data projector
•• Internet access
•• Wifi access information
•• Enough six-sided dice for all participants.

Welcome (5 mins)
•• Brief welcome
•• Wifi access information
•• Structure of the CPD session.

Reflection on school-based CPD (20 mins)
•• Ask attendees to split into small groups to reflect
on how the CPD has gone so far.

•• Bring the group back together and discuss.

The internet (60 mins)
Introduction (10 mins)

•• Ask participants to discuss how they’d explain the
difference between the internet and the World
Wide Web.

•• Provide a brief introduction on the internet.
•• You may wish to play the How the internet works
video from the CD-ROM.

Activity: How data is passed between computers
(25 mins)
(See Classroom activity ideas on page 34 of this
handbook.)

•• Explain that the group will be carrying out an
‘unplugged’ activity to model how the internet
passes packets of data.

•• Discuss how the activity will work.
•• Provide three message slips for each participant.
•• Run the activity.
•• Summarise the key learning points from the activity.
Allow time for participants to ask questions.

Activity: How a search engine works (25 mins)
(See Classroom activity ideas on page 41 of this
handbook: www.computingatschool.
org.uk/index.php?id=aberdeen.)

•• Explain that this is an ‘unplugged’ activity to
model how a search engine ranks results.

•• Summarise how the activity will work.
•• Stick the web pages up around the room.
•• Run the activity.
•• Discuss the key learning points from the activity.

B R E A K (1 5 m i n s)

Planning (20 mins)

•• You may wish to play the Planning a scheme of
work video from the CD-ROM.

•• Discuss options for creating or adapting a
computing scheme of work.

•• Ask teachers to split out into small groups to plan a
computing lesson.

•• Ask each group to summarise their plans.

Teaching (20 mins)
•• You may wish to play the Approaches to teaching
computing video from the CD-ROM.

•• Open up the floor for a general discussion about
teaching approaches for computing and encourage
individuals to share their experiences.

•• If discussion flags, ask about whether
participants think teaching computing and
teaching ICT are that different?

Assessment (20 mins)
•• You may wish to play the Assessing and tracking
progress video from the CD-ROM.

•• Provide a few examples of Scratch programs that
you (or pupils) have created, or just browse the
gallery of uploaded Scratch projects at http://
scratch.mit.edu/explore/?date=this_month.

•• Ask participants to split into small groups and
use the Progression Pathways, or the Attainment
Targets (PoS statements) to assess each program.

•• Bring the group back together to share thoughts
and ideas.

General discussion/questions (15 mins)
Use the following questions to facilitate a discussion:

•• How would you teach pupils how the internet and
search engines work?

•• How would you structure your scheme of work?
•• What makes a good computing lesson?
•• What do you see as the challenges for assessing
computing?

Conclusion and close (5 mins)

Session outline

http://www.computingatschool.org.uk/index.php?id=aberdeen
http://www.computingatschool.org.uk/index.php?id=aberdeen
http://www.computingatschool.org.uk/index.php?id=aberdeen
http://www.computingatschool.org.uk/index.php?id=aberdeen
http://scratch.mit.edu/explore/?date=this_month
http://scratch.mit.edu/explore/?date=this_month

60

QuickStart Computing

Here are some ways for you to get more involved in
computing and computer science education.

Have a go!
You’re likely to feel much more confident teaching
computer science after spending some time writing
some code of your own. Why not have a go at
developing your own interactive game, or creating a
scripted animation in Scratch or ScratchJr linked to
a topic you’re teaching (see e.g. the Barefoot Vikings
animation: http://barefootcas.org.uk/programme-of-
study/use-sequence-in-programs/upper-ks2-viking-
raid-animation-activity/).

Join CAS
Computing At School (CAS) is a grass-roots,
school-led organisation, and its energy, creativity
and motivating force comes from its members.
Membership is free and allows access to a wide range
of teaching resources and the community forums:
www.computingatschool.org.uk/.

Join the NoE
The Network of Teaching Excellence in Computer
Science (NoE) is co-ordinated by CAS and supported
by BCS (The Chartered Institute for IT), Department
for Education, Microsoft UK, Microsoft Research,
Google, Ensoft and The Council of Professors and
Heads of Computing (CPHC).

The aim of this programme is to build a high-
quality, sustainable CPD infrastructure by nurturing
collaboration between employers, universities,
professional bodies, schools and teachers.

You can register your school for free. For more
information, see: www.computingatschool.org.uk/
index.php?id=member-schools.

Become a Master Teacher
CAS Master Teachers deliver local CPD and play
a vital role in developing computing provision in
schools across the country.

If you can answer ‘yes’ to the following, then the
Master teacher programme is for you!

⚫⚫ Are you a teacher in a state maintained school?
⚫⚫ Would you like funding to develop your skills
and knowledge of computing in the new national
curriculum?

⚫⚫ Are you an experienced teacher with ‘good with
outstanding’ or ‘outstanding’ teaching seen in
your recent lesson observations?

⚫⚫ Can you confidently engage with your peers in a
professional environment?

⚫⚫ Do you have the ability to design and deliver
practical and interactive workshops for teachers
with appropriate course material?

⚫⚫ Do you have a passion about sharing best practice
in teaching and learning?

To find out more, visit: www.computingatschool.org.
uk/index.php?id=noe-master-teachers.

Join the Microsoft Educator Network
If you’re using Microsoft’s products, consider joining
their educator network. Access free software and
tools for student engagement, and view learning
activities and tutorials created by educators, with a
focus on increasing achievement and participating in
a global conversation about education:
www.pil-network.com/.

Join ScratchED
ScratchED is an online community for teachers
interested in, or already actively working with, the
Scratch authoring environment. With ScratchED,
educators can share stories, exchange resources,
ask and answer questions, and find other educators:
http://scratched.gse.harvard.edu/.

BCS Certificate in Computer Science
Teaching (CST)
The BCS certificate provides teachers with
professional recognition that they are competent
teachers of the computer science elements of
computing. It is accredited by the BCS and is open
to all qualified teachers who are currently teaching
computing. For more information, see: www.
computingatschool.org.uk/index.php?id=certificate.

MOOCs
There are a number of massive open online courses
(MOOCs) for computer science in education; for
example, Harvard’s CS50x (www.edx.org/course/
introduction-computer-science-harvardx-cs50x) and
UEA’s Teaching Computing. Microsoft also have an
extensive portfolio of free online courses:
www.microsoftvirtualacademy.com/.

Next steps

http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/
http://www.computingatschool.org.uk/
http://www.computingatschool.org.uk/index.php?id=member-schools
http://www.computingatschool.org.uk/index.php?id=member-schools
http://www.computingatschool.org.uk/index.php?id=noe-master-teachers
http://www.computingatschool.org.uk/index.php?id=noe-master-teachers
http://www.pil-network.com/
http://scratched.gse.harvard.edu/
http://www.computingatschool.org.uk/index.php?id=certificate
http://www.computingatschool.org.uk/index.php?id=certificate
http://www.edx.org/course/introduction-computer-science-harvardx-cs50x
http://www.edx.org/course/introduction-computer-science-harvardx-cs50x
http://www.microsoftvirtualacademy.com/

Websites
Computing At School (CAS) host a large resource bank of
plans, resources and activities. CAS is free to join:
http://community.computingatschool.org.uk/door.

The BCS Barefoot Computing project is developing concept
guides and exemplar activities. Free, but registration
required: http://barefootcas.org.uk/.

Naace (the ICT association) and CAS have developed
joint guidance on the new computing curriculum: www.
computingatschool.org.uk/index.php?id=primary-national-
curriculum-guidance.

New Zealand based CS Unplugged produce an excellent
collection of resources exploring computer science
ideas through classroom- rather than computer-based
activities: http://csunplugged.org.

CAS CPD Co-ordinator, Mark Dorling, has made available
a large collection of lesson plans and other resources
through the Digital Schoolhouse project for London
schools: www.digitalschoolhouse.org.uk/.

CAS Primary Master Teacher, Phil Bagge, has shared
detailed lesson plans for many computer science and
digital literacy topics: http://code-it.co.uk/philbagge.html.

A group of teachers and teacher trainers convened by
the NCTL and chaired by Toshiba’s Bob Harrison worked
together to curate resources for initial teacher training
for the computing curriculum: bit.ly/ittcomp.

There is a large collection of resources for teaching
all aspects of computing on the TES website, for
both KS1 and KS2. There’s also a discussion forum
online. Free, but registration is required: https://
community.tes.co.uk/search/?SB=postcount_i%20
desc&tc=1%2Fsubject%2Fictinformationtechnology.

Code Club provide detailed plans and resources for extra-
curricular clubs, which might be adapted for use within the
school curriculum. Free, but registration required: www.
codeclub.org.uk/.

Code Club Pro provides training for teachers on the
computing curriculum: www.codeclubpro.org/.

In the US, code.org make available a range of high quality
curriculum materials and activities linked to programming
and computational thinking: http://code.org/.

The BBC has an extensive set of resources for pupils,
linked to the new computing curriculum: www.bbc.co.uk/
schools/0/computing/.

BBC Two’s Cracking the Code: www.bbc.co.uk/
programmes/b01r9tww/clips.

The Raspberry Pi foundation has a good collection of high
quality resources, which are relevant to other platforms
as well as the Pi: www.raspberrypi.org/.

Resources for teaching safe, respectful and responsible
use of technology are widely available. Childnet
International and CEOP’s Thinkuknow are both good
starting points for exploring these topics: www.childnet.
com/ and www.thinkuknow.co.uk/.

SWGfL provide free access to digital literacy materials:
www.digital-literacy.org.uk/Home.aspx.

Futurelab is an independent charitable organisation
commissioning research into, and providing funding for,
cutting-edge applications of technology in education. Their
archive is also a useful resource: www.futurelab.org.uk/.

Publications
Armoni, M. and Ben-ari, M., Computer Science Concepts in
Scratch (Rehovot: Weizmann Institute of Science, 2013).

Barr, V. and Stephenson, C., ‘Bringing computational
thinking to K-12’, ACM Inroads 2:1 (2011).

Berry, M., Computing in the Primary Curriculum: A Guide for
Primary Teachers (Cambridge: Computing At School, 2013).

Bird, J., Caldwell, H. and Mayne, P., Lessons in Teaching
Computing in Primary Schools (Exeter: Learning Matters,
2014).

Brennan, K. and Resnick, M., ‘New frameworks for studying
and assessing the development of computational thinking’,
AERA 2012 conference paper (2012).

Byron, T., Do We Have Safer Children in a Digital World?
A Review of Progress Since the 2008 Byron Review
(Nottingham: DfE, 2010).

Department for Education, National Curriculum in England,
Key Stages 1 and 2 Framework Document (London: DfE,
2013).

Hammersley, B., Now For Then: How to Face the Digital
Future Without Fear (London: Hodder, 2012).

Hey, T., The Computational Universe, A Journey Through A
Revolution (Cambridge: CUP, 2014).

Mozilla, Why Mozilla Cares About Web Literacy (2014).

Naughton, J., From Gutenberg to Zuckerberg: What You
Really Need to Know About the Internet (Quercus, 2011).

Ofsted, The Safe Use of New Technologies (London: Ofsted,
2010).

Ofsted, ICT in schools 2008–11 (London: Ofsted, 2011).

Papert, S., Mindstorms: Children, Computers, and Powerful
Ideas, 2nd ed. (New York, NY: Basic Books, 1993).

Petzold, C., Code: The Hidden Language of Computer
Hardware and Software (Microsoft Press, 2009).

Wing, J M., ‘Computational thinking and thinking about
computing’, Philosophical transactions of the Royal Society
A, 366, 3717–3725 (2008).

Resources

61

Resources

http://community.computingatschool.org.uk/door
http://barefootcas.org.uk/
www.computingatschool.org.uk/index.php?id=primary-national-curriculum-guidance
www.computingatschool.org.uk/index.php?id=primary-national-curriculum-guidance
www.computingatschool.org.uk/index.php?id=primary-national-curriculum-guidance
http://csunplugged.org
http://www.digitalschoolhouse.org.uk/
http://code-it.co.uk/philbagge.html
http://bit.ly/ittcomp
https://community.tes.co.uk/search/?SB=postcount_i%20desc&tc=1%2Fsubject%2Fictinformationtechnology
https://community.tes.co.uk/search/?SB=postcount_i%20desc&tc=1%2Fsubject%2Fictinformationtechnology
https://community.tes.co.uk/search/?SB=postcount_i%20desc&tc=1%2Fsubject%2Fictinformationtechnology
http://www.codeclub.org.uk/
http://www.codeclub.org.uk/
http://www.codeclubpro.org/
http://code.org/
www.bbc.co.uk/schools/0/computing/
www.bbc.co.uk/schools/0/computing/
http://www.bbc.co.uk/programmes/b01r9tww/clips
http://www.bbc.co.uk/programmes/b01r9tww/clips
http://www.raspberrypi.org/
http://www.childnet.com/
http://www.childnet.com/
https://www.thinkuknow.co.uk/
http://www.digital-literacy.org.uk/Home.aspx
http://www.futurelab.org.uk/

62

QuickStart Computing

Knowledge and skills audit form
Use this form (or the interactive audit tool provided at www.quickstartcomputing.org) to audit your
computing knowledge and skills.

The relevant statement from the Computing PoS has been referenced in brackets.

I am not
confident
I can do this.

I am confident
I can do this.

I am very
confident
I can do this.

Section 1: Computer science

I can explain what an algorithm is (KS1: S1)

I can explain how algorithms are implemented as programs on
digital devices (KS1: S1)

I can explain how programs execute by following precise and
unambiguous instructions (KS1: S1)

I can create simple programs (KS1: S2)

I can debug simple programs (KS1: S2)

I can design programs that accomplish specific goals (KS2: S1)

I can write programs that accomplish specific goals (KS2: S1)

I can debug programs that accomplish specific goals (KS2: S1)

I can control or simulate physical systems (KS2: S1)

I can solve problems by decomposing them into smaller parts
(KS2: S1)

I can use sequence in programs (KS2: S2)

I can use selection in programs (KS2: S2)

I can use repetition in programs (KS2: S2)

I can work with variables (KS2: S2)

I can work with various forms of input (KS2: S2)

I can work with various forms of output (KS2: S2)

I can use logical reasoning to predict what will happen when I run
a program (KS1: S3)

I can use logical reasoning to predict what will happen when I
read through computer code (KS1: S3)

I can use logical reasoning to explain how some algorithms work
(KS2: S3)

I can use logical reasoning to detect errors in algorithms (KS2: S3)

I can use logical reasoning to correct errors in algorithms
(KS2: S3)

I can use logical reasoning to detect errors in programs (KS2: S3)

I can use logical reasoning to correct errors in programs (KS2: S3)

I can explain how computer networks work, including the internet
(KS2: S4)

http://www.quickstartcomputing.org

63

I am not
confident
I can do this.

I am confident
I can do this.

I am very
confident
I can do this.

I can explain how computer networks can provide multiple
services such as the World Wide Web (KS2: S4)

I can explain how search results are selected (KS2: S5)

I can explain how search results are ranked (KS2: S5)

Section 2: Information technology

I can use technology purposefully to create digital content
(KS1: S4)

I can use technology purposefully to organise digital content
(KS1: S4)

I can use technology purposefully to store digital content
(KS1: S4)

I can use technology purposefully to retrieve digital content
(KS1: S4)

I can use technology purposefully to manipulate digital content
(KS1: S4)

I can explain how to use search technologies effectively (KS2: S5)

I can select, use and combine a variety of software (including
internet services) on a range of digital devices (KS2: S6)

I can design a range of programs, systems and content that
accomplish given goals (KS2: S6)

I can create a range of programs, systems and content that
accomplish given goals (KS2: S6)

I can collect, analyse, evaluate and present data (KS2: S6)

I can collect, analyse, evaluate and present information (KS2: S6)

Section 3: Digital literacy

I can discuss common uses of information technology beyond
school (KS1: S5)

I can explain how to use technology safely (KS1: S6)

I can explain how to use technology respectfully (KS1: S6)

I can explain how to use technology responsibly (KS2: S7)

I can explain how to keep personal information private (KS1: S6)

I can explain where to go for help and support when pupils have
concerns about content or contact (KS1: S6)

I can discuss the difference between acceptable and
unacceptable behaviour online (KS2: S7)

I understand what opportunities computer networks offer for
communication and collaboration (KS2: S4)

I can explain how to be discerning in evaluating digital content
(KS2: S5)

64

QuickStart Computing

Glossary
Acceptable Use Policy (AUP): An Acceptable Use Policy
comprises a set of rules applied by the owner/manager of a
network, website or large computer system that defines the
ways in which the network, site or system may be used.

Algorithm: An unambiguous set of rules or a precise step-by-
step guide to solve a problem or achieve a particular objective.

Command: An instruction for the computer to execute, written in
a particular programming language.

Computational thinking: Thinking about systems or problems
in a way that allows computer systems to be used to model or
solve these.

Computer networks: The computers and the connecting hardware
(wifi access points, cables, fibres, switches and routers) that make it
possible to transfer data using an agreed method (‘protocol’).

Creative Commons: A licensing scheme where the creator of
an original work allows others to use it without seeking further
permission, subject to a number of agreed conditions: www.
creativecommons.org.

Data: A structured set of numbers, possibly representing
digitised text, images, sound or video, which can be processed
or transmitted by a computer, also used for numerical
(quantitative) information.

Debug: To fix the errors in a program.

Decomposing: The process through which problems or systems
are broken down into their component parts, each of which may
then be considered separately.

Domain Name Service (DNS): The distributed automatic system
that converts domain names into the IP addresses which are
used for routing packets via the internet.

Encrypt: To securely encode information so that it can only
be read by those knowing both the system used and a secret,
private key.

E-safety: Used to describe behaviours and policies intended
to minimise the risks to a user of using digital technology,
particularly the internet.

Generalisation: A computational thinking process in which
general solutions or models are preferred to or derived from
particular cases.

Hardware: The physical systems and components of digital
devices; see also software.

Hypertext mark-up language (HTML): HTML is the language in
which web pages are composed.

Hypertext transfer protocol (HTTP): HTTP is the standard
protocol for the request and transmission of HTML web pages
between browser and web server.

Input: Data provided to a computer system, such as via a
keyboard, mouse, microphone, camera or physical sensors.

Interface: The boundary between one system and another –
often used to describe how a person interacts with a computer.

Internet Protocol (IP) addresses: Numeric addresses uniquely
specifying computers directly connected to the internet, also used
on private networks to uniquely identify computers on that network.

Loop: A block of code repeated automatically under the
program’s control.

Network server: A computer connected to a local area
network providing services – such as file storage, printing,
authentication, web access or email – automatically to other
computers on the network.

Open source software: Software in which the source code is
made available for others to study, and typically adapt, usually
with few if any restrictions.

Operating system: The programs on a computer which deal with
internal management of memory, input/output, security and so
on, such as Windows 8 or iOS.

Output: The information produced by a computer system for its
user, typically on a screen, through speakers or on a printer, but
possibly through the control of motors in physical systems.

Packets of data: A small set of numbers that get transmitted
together via the internet, typically enough for 1000 or 1500
characters.

Programmable toys: Robots designed for children to use,
accepting input, storing short sequences of simple instructions
and moving according to this stored program.

Program: A stored set of instructions encoded in a language
understood by the computer that does some form of
computation, processing input and/or stored data to generate
output.

Repetition: Executing a section of computer code a number of
times as part of the program.

Router: Network hardware which forwards packets of data
onwards to the most appropriate hardware to which it is
connected.

Screencast: A recording of on-screen action that is often
accompanied by an audio narration.

Script: A computer program typically executed one line at a time
through an interpreter, such as the instructions for a Scratch
character.

Selection: A programming construct in which one section of
code or another is executed depending on whether a particular
condition is met.

Sequence: To place program instructions in order, with each
executed one after the other.

Simulation: Using a computer to model the state and behaviour
of real-world (or imaginary) systems, including physical or social
systems; an integral part of most computer games.

Sprite: A computer graphics object that can be controlled
(programmed) independently of other objects or the background.

Uniform Resource Locator (URL): A standard for specifying the
location on the internet of certain files.

Variables: A way in which computer programs can store, retrieve
or change data, such as a score, the time left, or the user’s name.

Web server: A service running on a computer (or sometimes
for the computer itself) that returns HTML data for a web page
when it receives an HTTP request via the local network or the
internet.

World Wide Web: A service provided by computers connected
to the internet (web servers), in which pages of hypertext (web
pages) are transmitted to users.

http://www.creativecommons.org
http://www.creativecommons.org

