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A practical investigation, exploring the properties of a hexahexaflexagon. Their behaviour is captured in a 
State Diagram and through this the notion of a Finite-State Machine is introduced. 

Preparation required:  
Part complete class set of A3 hexahexaflexagons (trimmed and folded in half) with assembly instructions. A 
Hexahexaflexagon Exploration Sheet per student. 
 

Models Of Computation  

Textbooks often explain computers by reference to Input/Process/Output - a general model of how 
something is computed. Computations can be expressed as algorithms – the steps required to accomplish a 
particular task. Tenderfoot Unit 5 introduces theoretical models of computation that formalise the notion of 
an algorithm. This may seem a bit obscure, but finding ways of expressing algorithms leads to some very big 
questions. Using models of computation, famous computer scientists have shown that there are things 
computers will never be able to solve, no matter how quick or powerful.  

Hexahexaflexagons 

Based on material by Paul Curzon (cs4fn), this activity explores the properties of a 
hexahexaflexagon and uses them to introduce ‘finite-state machines’. The supporting 
booklet is included in the resources and at www.cs4fn.org/hexahexaflexagon/. A 
hexahexaflexagon is a curious hexagonal shape, made by folding a piece of paper. Their 
discovery is credited to British mathematician, Arthur H Stone, studying at Princeton 
University in 1939. Finding his English sized paper didn’t fit his American folder, he tore a strip off and folded 
it up. The Princeton Flexagon Committee was formed with friends, Bryant Tuckerman, Richard Feynman and 
instructor John Tukey to explore their properties. Some years later (1956), mathematician Martin Gardner 
popularised them in the magazine Scientific American. In 2012, to celebrate Martin Gardner's birth, on 21 
October, Vi Hart produced 3 wonderful videos telling the story of the hexaflexagon. They provide an 
excellent introduction to the Tuckerman Traverse: youtu.be/VIVIegSt81k. Can children figure out a way to 
cycle through and display all the faces of a hexahexaflexagon, returning to their starting point? 

 Resources include a template to make hexahexaflexagons. It should be 
enlarged by 141% to fit A3 paper. Small hexahexaflexagons are hard to 
manipulate. The shape is best provided cut out, folded along its length and 
stuck back to back, as accurate folding and sticking is essential. Students can 
work individually or in groups depending on the number available. The 4 steps 
on the handout show how to complete it. If students struggle, encourage them 
to use the video link on the handout. 

Flexing is a matter of pinching and flattening the opposite 
side. The letters and numbers on the flexagon help the 
student’s exploration. Start with the yellow side facing 
you. If assembled correctly, the 3’s should be in a central 
ring and the lower case a’s and b’s together. Always keep 
the flexagon facing the same way up. By pinching and 
pushing, it turns inside out. The pinch points are indicated 
by adjacent pairs of lower case letters (a, b or c). 
Encourage initial exploration to see what can be 
discovered.  

http://www.cs4fn.org/hexahexaflexagon
http://www.cs4fn.org/hexahexaflexagon
https://youtu.be/VIVIegSt81k
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The Tuckerman Traverse 

After a few minutes exploration, introduce the Tuckerman Traverse. Discussion prompts are given in the 
slide notes. How many faces does it have (9)? Some faces have the same colour, but can be seen to be 
different by the positioning of the digits. With the flexagon kept the same way up, each face is identified by 
the central ring of digits. How can we be sure we have explored them all? A diagram is an example of 
abstraction – removing details that obscure understanding. Which details are important? The 3’s in the 
middle identify the face, so we can draw a node. When we pinch at ‘a’, we move to face 2. From face 2 we 
can’t pinch anywhere and move back so the arrow is one way. The faces are indicated by nodes, and the 
transitions indicated by edges linking different faces. Diagrams like these are 
known as directed graphs (digraphs). The graph represents the transitions 

between faces. The edges have a letter assigned, indicating 
where to pinch, and the arrow indicates a direction.  

Working in small groups, students complete the table to 
record results. Exploration needs to be systematic. The 
presentation records the first few moves together. Read the 
slide notes carefully to ensure you understand the animation. 
Make sure students complete the table and add the transition 
to a digraph in the box above.  

The completed graph models the hexahexaflexagon. It is now easy to plan a 
‘Tuckerman Traverse’.  By abstracting away unnecessary detail the problem is 
easier to solve. Indicating where to start (with an arrow), students can trace the 
inputs required to move between different states. A double ring denotes an end 
state. A graph indicating a set of states and inputs required for each transition is 
known as a State Diagram. It expresses the behaviour of a ‘finite-state machine’. 

The graph denotes a finite number of states (nodes). It also indicates the actions (or inputs) required to 
move from one state to another (the letter to pinch). All possible actions (in this case the letters a, b and c) 
are known as the machines alphabet – the only acceptable inputs. State Diagrams can also output things. To 
keep it simple, the only output in this case is displaying the colour and number of the face. State Diagrams 
are extremely useful. They are a visual representation of a potential sequence of inputs/actions and can 
therefore be used to model many computational processes.  

There is a more difficult extension. Turning the flexagon over reveals a face with no numbers in the middle. 
There are many more faces to explore flexing it this way up. Is a full traversal of all sides possible? To answer 
that, we need to decompose the problem into smaller explorations. Decomposing a complex task into 
smaller parts is a key concept in computational thinking. Suggesting what to investigate first makes a good 
discussion. Slide notes provide prompts but it is left as an open ended extension. 

A simple utility for children to create their own hexahexaflexagon, offers a practical element to end the 
activity. The result is a vector graphic which can be scaled to maximise the print area available.  

State Diagrams, as we have seen, can visually represent the behaviour of something that responds to input, 
has a set (finite) number of states, and can (if needed) output something too. Artefacts displaying such 
behaviour are all around us. In Computer Science we call them finite-state machines. Finite-state machines 
are extremely useful. They can be used to model many (but not all) computational processes. The 
presentation considers the behaviour of a ball point pen and a combination lock. Traffic lights are a more 
complex example. A homework exercise might be to draw a state diagram for a pelican crossing, or identify 
other household objects that can be modelled through state diagrams. Lots of simple electrical or 
mechanical devices will fit this description.  


