
‘Proper’ Programming
Teacher Notes to support Tenderfoot Unit 1: How Computers Do Stuff – A conceptual approach to programming (part 2)

CAS Tenderfoot

A practical introduction to Small Basic, reinforcing key concepts and constructs.

Preparation required:
Small Basic available on all computers, sample programs available in a shared repository.
Fizz Buzz activity sheet.

Small Basic Basics

Now that students have had some experience of writing text based code we can begin to try to draw
everything together. As before, we’ll try to emphasise the 1 big idea, focusing on practical activities to
illustrate the 3 constructs and 4 concepts we want to bring out from all the activities. We’ll take the same
approach of targeting the exercises to minimise cognitive load and we’ll use another specially designed
‘transition environment’.

Small Basic gives pupils a feel of an industry standard IDE and
has been designed to help transition to Visual Basic.NET. It
has a code editor where children construct their programs,
but one key reason for using it is the ‘IntelliSense’ which is a
real help now that syntax becomes more complex. We can
also begin to introduce the language of objects, which is
common in many programming languages.

As before, work to ensure students can read code, before
trying to write it is essential. The presentation steps through
the basics. Comments start with an apostrophe, and are
highlighted in green. Precision in describing each statement is
important. Ask students to read the line highlighted before
modelling the answer (on the slide). If we execute the code, a
text window opens, with the title property set. All examples
are included in the resources, the first being 01Welcome.sb.

New terminology needs to be outlined at the start, with a
particular distinction drawn between properties and
methods. Don’t underestimate the extra cognitive load for
some students with this new terminology and try to draw an
association with concepts they are familiar with from
previous work. Compare and contrast properties and
methods, perhaps looking for associations with other
concepts students are familiar with, such as Nouns and Verbs.

Intellisense lists the objects (and key words) based on what you type and when selected the properties and
methods associated with the object are displayed and can be selected. This is a huge help in minimising
syntax errors.

When you save a program, a Small Basic project file is created. This is your source code. When you run your
program, a further 3 files are created. SmallBasicLibrary.dll is called a run-time library. It contains files that
help your program run. The Welcome file (marked Application if you list the details) is the compiled version
which runs and Welcome.pdb is a database file with information needed by your program. Three files with
the same name can be a source of initial confusion, so it is worth pointing this out. It can be introduced as a
quick investigation for pupils. The main point; with the potential to generate many files (if several programs
are written), keep each project in a separate folder.

2

Key Concepts: Data Types

We can use Small Basic to introduce another key idea. We know that a single entity of data can be stored in
a variable. Different types of data can be stored and depending on the data type, different things done. So
we can add to our list of classroom chants: “There are 4 primitive data types. They are?” and the answer
should come back Character, Boolean, Integer and Float. Combinations of characters are known as a string
(of characters). A character can be any letter, symbol or digit. Children can struggle to distinguish between a
number (made up of digits) and the use of a digit as a character. Phone numbers and vehicle registration
plates are good examples to distinguish from integers or floats. You do maths on real numbers.

02DataTypes.sb makes the point about different data types behaving differently. Ask children to predict
what will happen. Once they have created their mental model, open and run the code. The result will
probably surprise them. Small Basic does not insist on specifying data types, but determines it by evaluating
the value assigned to it. So both variables are integers. But… in order to display anything on the screen, it
must be converted to a string of characters first. So the + acts to concatenate 3 strings. Uncomment the last
line to compare the effect of bracketing the two numbers together. Now the calculation is executed before
the conversion to a display string.

03SimpleMaths.sb demonstrates floor division and modulo. When reading the code, insist on precision in
the explanation. Use the sample line to model the language required; “Two parameters, the starting number
28, and the divisor 5 are passed to the built in maths function, called remainder, and the result is assigned to
the variable LeftOver”. When describing a complex statement, it is often best to read it from right to left.

Once students recognise the pattern in 04BlastOff.sb they nearly always fail to notice it will print a zero
before BlastOff. Possibly trace it on the board. The example gives the syntax for a counter controlled loop.
An alternative condition controlled loop is shown in the presentation. Having pointed out the printing of
zero on the last example, ask if this will print the zero or not? Out by one errors in loops are one of the most
common programming mistakes.

Let’s Play Fizz Buzz

Playing a few rounds of Fizz Buzz with the class first to ensure they all are familiar
with the game. Children take it in turns to count up in sequence. If a number is
divisible by 3 the child says ‘Fizz’ instead. If it is divisible by 5, the number is
replaced with ‘Buzz’. The coding exercise is a classic test of the ability to structure
constructs correctly. There is nothing new but, as always, the key to success is to
decompose the problem first. If children attempt to write the entire thing, they will
probably get lost.

Initially the upper bound could be set in the program to say 50 and the students encouraged to use a For
loop. They have the example syntax but should be encouraged to read the Intellisense help. They will need
to use it for the extension tasks. The solution will require the use of math.remainder. The key ‘gotcha’
revolves around numbers that are divisible by both 3 and 5, when the output should be ‘Fizz Buzz’.

There is an activity sheet with extensions and solutions to the various stages in the resources.

Taking Thing Further

A succinct guide (in the resources) comes with Small Basic. It gives plenty of
ideas for simple programs to reinforce the basic ideas. At the risk of repetition,
moving on too quickly is probably the biggest pitfall facing inexperienced
teachers. Explore some of the shape investigations in the chapter on turtle
graphics (Ch8). The preceding chapter on manipulating shapes in the graphics
window would be good preparation for the tasks in the next session.

