
     

 

Algorithms and Data Structures 

Investigating A Card Shuffle App  

You are provided with a Card Shuffler program. Even if you aren’t familiar with coding a GUI, studying this 
program carefully, and amending it should make it clear how they work. Open the program 
Graphic_Shuffle_Investigation.sb. Make sure you have the folder Cards folder in the same directory as the 
program. Run the program – it should look like the window below, but nothing works! 

 

Creating a graphics window, like that shown is straightforward. Can you 
see it in your code? It is shown right (lines 7 – 11).  Note also the use of 
a FilePath variable (line 19), which will allow you later in the program to 
create a string pointing to the subdirectory of the card images. Line 43 

(shown left) demonstrates 
how the FilePath variable is 
concatenated (joined) with the 
filename of the card back image (53.png) in the string CardBack. 

The buttons are examples of control objects. These allow a GUI to be controlled via button clicks and 
other common features. Ours don’t work, because the relevant code on Line 27 is commented out. When 
it is activated, a button click will ‘raise an event’ causing the Click subroutine to be called.  

 

Explain how 52 card back images are displayed in a row. 

 

 

 

Which subroutine contains the commands to create the other graphic elements (titles, buttons etc.)? 

 

 

 

Explain how the Click subroutine works. 



     

 

Challenge1: Displaying the deck in order 

Once the buttons are activated we are able to display the cards in shuffled order. But why can’t we display 
them in the original order when the deck is created? Each image has a number as a filename. If you look 
at these images, when an array of integers from 1 to 52 is created, the cards mapped to these numbers 
should display in order when first created (as shown above). Refactor the code, so it displays the original 
Deck in order, before a Shuffle takes place. 

Challenge 2: Tidying the code 
The shuffle subroutine uses a Knuth shuffle, which is difficult to understand. Amend the code to include 
your own shuffle algorithm into the subroutine. If you used a Swap subroutine you will have to include 
that as well. 
 
Currently the shuffle subroutine also includes the code to display the cards face down. This has nothing to 
do with shuffling and should be factored out into it’s own subroutine. This is a common mistake. 
Subroutines should always be developed for separate tasks. 

Challenge 3: Sorting the deck  
Implementing any sorting algorithm is a challenge, but it if you can code a bubble sort (or any other 
sorting method) include it so the cards can be sorted back into order.  
 
There is a simpler way to do this, and that is to recreate the array. Calling the subroutine ManyIntegers 
will achieve the same result. This can be done with some simple refactoring. 
 
Whichever method you choose, the real challenge is then to work out how to create and display a fourth 
button which calls a subroutine CardSort when it is clicked. 

Challenge 4: Name that card  
This final challenge is quite hard, so treat it as an 
extension. We represent a deck of cards by the 
numbers 1 to 52. Write the code to input a value to a 
variable CardNumber. It will then print the 
description of the card e.g. “King of Hearts”. 
Encapsulate this in a subroutine CardName. The 
image provides a hint to  help you achieve this. 
 
It does not need to be incorporated in the GUI, but 
that could be an extra challenge! 
 
Good luck! 
 

 


