
Recent developments

in computer science education research
Sue Sentance

King’s College London & Raspberry Pi Foundation

sue@raspberrypi.org

sue.sentance@kcl.ac.uk

University of Manchester

Computer Science Department Seminar

July 23rd 2018

mailto:sue@raspberrypi.org
mailto:sue.sentance@kcl.ac.uk

Today’s talk

 Overview of field

 Key areas where developments are taking place

 Some King’s projects

 Programming research summary

 Questions

About me:

Senior Lecturer in Computer Science Education at KCL (2014-2018)

Chief Learning Officer, Raspberry Pi Foundation, 2018-..

PhD in AI & ED, 1993

PGCE 1999

Taught in schools, 1999-2010

Royal Society Advisory Committee

Computing At School/ BCS Boards etc,

My focus is on research around computing

in school but this mostly draws from CS Ed

research in HE or has implications for it

Where to start?

Maria Kallia, KCL
Jane Waite, QMUL & KCL

Journals Conferences

Computer Science Education

ACM TOCE

BJET

Computers & Education

Computers in Human Behaviour

ICER (more theoretical)

ITICSE (Europe)

SIGCSE (US)

WIPSCE (School-focus)

ISSEP (School-focus)

Our context: interest in teaching computing in school is growing

2. In England, Computing is a mandatory school subject

1. Internationally – a snapshot from 6 countries (Webb et al, 2018)

Increase in

A-Level

numbers

Key questions for researchers

How do we teach CS in schools and in HE?

How do we increase engagement and motivation?

…..

Key issues for researchers

In HE, CS Ed research is under-valued and under-funded

For K-12, CS Ed research is in its infancy, under-funded and not

prevalent in education departments

Mapping the field

Computer Science

Education Research

Tools, software,

devices, etc.

Courses &

curricular
(inc theoretical

underpinning)

Pedagogy and

assessment

Societal,

attitudinal

factors

Programming

misconceptions

Peer

instruction

Pair programming

Block-based

environments

Tracing and

reading code

Automated

assessment

Papert and

constructionism
Sub-goal

modelling

Growth

mindset

Visualisation

tools

Unplugged

computing

Diversity

Motivation

and interest

Outreach

Teacher

professional

learning

Computational

thinking

Inclusion

Physical

computing

Progression

Informal

learning

Mentoring

ContextualisationDual-modality

environments

Mapping the field

Computer Science

Education Research

Tools, software,

devices, etc.

Courses &

curricular
(inc theoretical

underpinning)

Pedagogy and

assessment

Societal,

attitudinal

factors

Programming

misconceptions

Peer

instruction

Pair programming

Block-based

environments

Tracing and

reading code

Automated

assessment

Papert and

constructionism
Sub-goal

modelling

Growth

mindset

Visualisation

tools

Unplugged

computing

Diversity

Motivation

and interest

Outreach

Teacher

professional

learning

Computational

thinking

Inclusion

Physical

computing

Progression

Informal

learning

Mentoring

ContextualisationDual-modality

environments

Themes from CS Ed articles 2004-2014

0%

5%

10%

15%

20%

25%

Chart Title

School HE All

Numbers of papers: All – 2225 University - 1285 School -420

How is this changing now?

Survey looked at papers in:

Journals:

Computer Science Education

ACM TOCE

Conferences:

WIPSCE, ITICSE, ICER, ISSEP

and SIGCSE

Some particular areas to look at

A. Programming environments for beginners

B. Learning programming: pedagogy (inc tracing, threshold concepts, PRIMM and misconceptions)

C. Computational thinking

D. Physical computing

E. Inclusion

A. Programming environments

A. Programming environments for beginners

Increase in numbers of papers about Scratch since 2007

(in our survey)

0

2

4

6

8

10

12

2007 2008 2009 2010 2011 2012 2013 2014

Papers about Scratch (2007-2014)

Some key papers
Learning computer science concepts with Scratch

(Meerbaum et al, 2013)

• Focus on concepts learned (not skills)

• Tested > 200 Year 9 students taught Scratch

systematically

• Testing showed difficulties with loops, variables and

concurrency

Habits of programming Scratch (Meerbaum-Salant et al,

2011)

- block-based environments increase extremely fine-

grained programming (too bottom-up) – bad habits for

future

Recent developments

Recent developments: comparing understanding in blocks-

based and text-based programs (Weintrop and Wilensky, 2015)

Another paper last year found that although attitudes and

perceived difficulty was the same with block-based and text-

based programming, pupils achieved goals more quickly (less

idle time) with block-based (Price & Barnes, 2015).

A: Dual-modality programming environments

David Weintrop and Nathan Holbert, 2017

From Blocks to Text and Back: Programming Patterns in a Dual-modality Environment

23 students – 13 high school, 10 in HE

Initially all students worked in blocks

Students switch modes – not one-way

Correlation between self-efficacy and

use of text-based

Frame-based editing with Stride

A different approach is being taken by the Greenfoot team at KCL (Michael

Kӧlling, Neil Brown et al) who use frame-based editing as a way of

programming using text but a drag-and-drop highly structured interface

B. Learning programming

B. Learning programming : reading code

Some research highlights

2004: Multi-institutional study of reading and tracing skills

shows better performance in programming by those able to

trace code (Lister et al, 2004)

2011: Use of neo-Piagetian framework to establish stages

that novice programmers go through (Lister et al, 2011)

2014: Exemplification of framework through case studies,

using think-aloud to find out more about students’ thought

process while programming (Teague and Lister,, 2014).

Application in school

PLAN C (CAS Scotland) have developed a

model for enabling students to trace through

code called TRACS

Work in this area suggests that

student pass through neo-

Piagetian stages: sensorimotor,

preoperational, and concrete

operational stages, before

eventually reaching programming

competence at the formal

operational stage

B. Learning programming: Common misconceptions

One recent paper: Exploring programming

misconceptions (Sirkia and Sorva, 2014)

Based on analysis of 24,000 log files from

UG students first learning programming:

Research found:

 Inverted assignment (first = second) -

wrong way round

 If X == Y: (execute then part even if false)

 Returning False from function even

though condition does not hold

 Not storing return value of function

 Etc….

The 1980s

Early work on misconceptions and

novice programmers (Ben du Boulay,

1986, Bayman and Mayer, 1983, Bonar

and Solway, 1985)

 Loops are difficult

 Differentiating between a string and a

number

 Confusion of equality and assignment

 Inputting data (from where?)

 etc…

Steady stream of

work in this field,

including Juha

Sorva’s PhD work

New chapter by Sorva (2018) describes 41 different programming misconceptions (in my book)

B: Examples of current projects: threshold concepts

Maria Kallia is working on a project to understand which concepts in computer programming

are particularly difficult and could be identified as “threshold concepts”.

• Focus on functions and parameters in programming

• Latest study looked at liminal space – the confused state you are in before you reach an

understanding of something (go over the threshold)

• Maria developed a test of programming performance and compared to attitudinal factors

including self-efficacy, motivation and interest

Findings (all statistically significant):

• There is a significant relationship between liminal space and CS identity

• Troublesome knowledge impacts sense of belonging and motivation, but not identity

• Girls in the liminal group experience troublesome knowledge more intensely than boys and

this influences their sense of belonging, motivation and identity while boys experience an

impact only in the sense of belonging.

• She has developed a model for predicting students are in liminal or post-liminal space from

their self-efficacy, motivation, identity and self-evaluation which explains 78.6% of the

variance.

B: Examples of current projects: PRIMM

A framework for working with beginners using text-

based programming:

Predict – given a working program, what do you think

it will do? (function)

Run – run it and test your prediction

Investigate – get into the nitty gritty. What does each

line of code mean? (structure). Lots of activities here:

trace, annotate, explain, talk about, identify parts,

etc….

Modify – edit the program to make it do different

things (function)

Make – design a new program that uses the same

nitty gritty but that solves a new problem (function).

PRIMM Study (to appear!)

Mixed-methods study

Part A: Quasi-experimental design

14 KS3 teachers

180 students in control group (11-13)

493 students in experimental group (11-13)

Pre-test and post-test

Findings:

- Statistically significant difference between post-tests of control

and experimental groups

Part B: Co-generation, design-based research with teachers

10 interviews, 1 focus group, and teacher journals

Understanding why the approach works

Themes emerged around:

- Differentiation and increased accessibility

- Influence of language and talk

Theoretical framework

• Drawing on Vygotsky and social constructivism

• Concept of mediation is used to explain how the program begins on

the social plane then moves to cognitive plane and to being

understood by the learner

• This is similar to the Use-Modify-Create approach it builds on

PRIMM Materials

The materials we used in our study will shortly be available

online with lesson plans for adaption by teachers

C. Computational Thinking

CT has become a popular research topic

Graph shows number of papers published with CT in title

44 already in 2018

Different views (this analysis is simplistic!) generating some interesting debates

C. Computational thinking

Jeannette

Wing

(2006)

Tedre &

Denning

(2016)

• History of algorithmic thinking – we’ve been here before

• CT is not a superior way of thinking

• We should emphasise design and modelling

• Risk of exaggerated claims

• Risk of narrowing view of computing

“[Computational thinking] … represents a

universally applicable attitude and skill set

everyone, not just computer scientists,

would be eager to learn and use.”

”The new CT movement aimed to include also those who use computational

tools and those who engage in step-by-step procedures. The attempt to

broaden the CT audience moved into unchartered territory, where there is less

certainty that tool users and procedure followers need CT or benefit from it.”

• CT is a fundamental skill

• For everybody, not just computer scientists

• Human thinking, not just computer thinking

• Ideas and problem solving

1 1 2 4
10 12

21
16

37
43

47

63

108

0

20

40

60

80

100

120

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Data from https://csedresearch.wordpress.com/computational-thinking/

https://csedresearch.wordpress.com/computational-thinking/

Some reviews of CT literature

Author Number of

papers

Conclusion

Kalelioglu, Gulbahar and Kukul

(2016)

125 papers

on CT

Lack of theoretical framework – game-based

learning and constructivism primarily

Immature field – not many papers

No consistent definition

Lye and Koh (2014) 27

intervention

studies

Focusing on CT and programming only

Need to explore more classroom-based

interventions

Shute, Sun and Asbell-Clarke

(2017)

45 papers

reviewed

Considered papers researching CT in robotics,

game design and range of environments

Comparison of frameworks and proposed new one

C: Example projects in the area of CT

Recent work by a group of researchers

in Madrid:

• Can computational talent be

detected? Predictive validity of the

Computational Thinking Test

• Extending the nomological network

of computational thinking with non-

cognitive factors

• Towards Data-Driven Learning Paths

to Develop Computational Thinking

with Scratch

Possibly the most rigorous work being

conducted in the area of

computational thinking

Recent results:

• Development of a model to predict computational talent

in school students

• Evaluated with 314 middle school students

• Distinguishes between computational regular thinkers and

computational top thinkers

• Implications for computing curriculum development

NB Their definition of CT is more like programming (warning to Wing-lovers)

D. Physical computing

D. Physical computing: more and more devices

… and the rest

Closely linked to constructionism in the literature:

“Constructionism –the N word as opposed to the V word – shares constructivism’s connotation of learning as

“building knowledge structures” irrespective of the circumstances of the learning. It then adds the idea that this

happens especially felicitously in a context where the learner is consciously engaged in constructing a public

entity, whether it’s a sand castle on a beach or a theory of the universe.” (Papert, 1991)

D. Physical computing

Research on pedagogical benefits

Tangible nature may facilitate understanding (Marshall, 2007)

Concrete easier to understand than abstract (Papert, 1980)

Lends itself to collaborative working (Sentance & Schwiderski-

Grosche, 2013)

Can learn directly about how computers work and mathematics

(Papert, 1980)

Facilitates creativity (Kafai, 2015)

Hybrid interfaces can be used to facilitate progression in

programming (Horn et al. 2012).

Examples of pedagogical approaches:

Activity-media design (Jin et al, 2016)

Method developed to facilitate the

development of physical computing learning

activities which minimise cognitive load.

Use-modify-create (Lee et al 2011)

Move from “not mine” to “mine”

Use existing projects first, then modify and

build new ones

E. Inclusion

E. Inclusion

Catherine Elliott, presenting at LCERS

Key question:
How can we build a Computing curriculum that is accessible to all learners?

Hansen et al, 2016. Differentiating for Diversity:

Using Universal Design for Learning in Elementary

Computer Science Education.

Design-based research methodology used to

iteratively inform the development of the curriculum,

programming environment, and research - involves

researchers and practitioners collaborating in real-

world settings with the aim of improving educational

practices.

65 special-needs teachers reported on opportunities

and barriers of computing in the SEND classroom

“Many of our students are very engaged by ICT. It can be
incredibly motivational for ASD and SEMH learners. It
empowers students who struggle with social interaction
to present and share their work widely.”

Need for more research!

E: Examples of current projects: Torino and visually impaired children

Torino is a physical programming language

that was developed to be inclusive of learners

with visual impairments. It was designed to

teach programming concepts to children ages

7-11 regardless of level of vision.

To create programs with Torino, physical

‘command pods’ are connected together,

which produce sound in the form of music,

stories and poems. There are four main types

of command pods: play, pause, loop and

selection, each of which represents a line of

code in the program.

Alex Hadwen-Bennett is looking at the way that

visually-impaired learners use Torino to learn

programming

Initial findings:

• Blind and partially-sighted students use the tool in

different ways to learn programming

• Exploratory procedures (type of gestures) are used

to trace the flow of control in the program

• Different types of gestures and exploratory

procedures are used to demonstrate understanding

Potential implications for sighted students:

The focus on control flow as a separate process to

tracing is being explored through this work ->

implications for work in schools on teaching

programming.

Programming research summary

We have already seen some research in the area of learning programming:

- Effectiveness of reading code

- PRIMM

- Threshold concepts

- Block-based and dual-modality programming environments

Other research (with no time to cover) includes:

• Stepwise self-explanation

• Sub-goal modelling

• Worked examples

• Pair programming

• Use of Parson’s Puzzles

• Tinkering and Bricolage

See Caspersen (2018) for an overview
Continuum of approaches for school education by Jane Waite

(https://blogs.kcl.ac.uk/cser/2018/01/05/a-continuum-of-scaffolding/)

What next?

Upcoming meetings and conferences around computing education research

Event Date

ICER 2018 Aug 13-15, Helsinki

WIPSCE 2018 Oct 4-6, Potsdam

ISSEP 2018 Oct 10-12, St Petersburg

CAS Research meetings October half-term, Feb half-term, etc.

Computing Education Practice conference Jan 9, Durham

SIGCSE 2019 Feb 27-Mar 2, Minneapolis

LCERS at King’s College London June

ITICSE 2019 July 15-17, Aberdeen

Find this and more information at the UK -ACM SIGCSE website:

https://uki-sigcse.hosting.acm.org/

https://uki-sigcse.hosting.acm.org/

Take-away thought

This should be an exciting time to be involved in computing education

research due to the emergence of the subject in schools. The

opportunities provided by new computing curricula coupled with advances

in technologies and analytical tools with which to mine big datasets, and

the increasingly interdisciplinary nature of educational research, offer

enormous scope for advancing computing teaching and learning.

The Royal Society’s After the Reboot report, 2018

References
Bayman, P., & Mayer, R. E. (1983). A diagnosis of beginning programmers' misconceptions of BASIC programming statements. Communications of the ACM, 26(9), 677-679.

Boulay, B. D. (1986). "Some Difficulties of Learning to Program." Journal of Educational Computing Research 2(1): 57-73.

Horn, M. S., Crouser, R. J., & Bers, M. U. (2012). Tangible interaction and learning: the case for a hybrid approach. Personal and Ubiquitous Computing, 16(4), 379–389.

Jin, K., Haynie, K., and Kearns, G. (2016). Teaching Elementary Students Programming in a Physical Computing Classroom. Proceedings of the 17th Annual Conference on Information Technology Education. Boston.

Kafai, Y. B. and Burke, Q. 2013. The social turn in K-12 programming: moving from computational thinking to computational participation. In Proceeding of the 44th ACM technical symposium on Computer science education (SIGCSE '13). ACM,

New York, NY, USA, 603-608

Kalelioglu, F., Gülbahar, Y., & Kukul, V. (2016). A framework for computational thinking based on a systematic research review. Baltic Journal of Modern Computing, 4(3), 583.

Kallia, M. (2017). Assessment of computer science courses: a literature review. Part of the Royal Society Computing Education project. Can be accessed at: https://royalsociety.org/topics-policy/projects/computing-education/

Lister, R. (2011, January). Concrete and other neo-Piagetian forms of reasoning in the novice programmer. In Proceedings of the Thirteenth Australasian Computing Education Conference-Volume 114 (pp. 9-18). Australian Computer Society, Inc..

Lister, Raymond, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer, Morten Lindholm, Robert McCartney et al. "A multi-national study of reading and tracing skills in novice programmers." In ACM SIGCSE Bulletin, vol. 36, no. 4, pp. 119-

150. ACM, 2004.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12?. Computers in Human Behavior, 41, 51-61.

Marshall, P. (2007). Do tangible interfaces enhance learning? in Proceedings of TEI'07, 15-17 Feb 2007, Baton Rouge, LA, USA.

Meerbaum-Salant O., Armoni M. & Ben-Ari M., 2011. Habits of programming in scratch. In Proceedings of the 16th annual joint conference on Innovation and technology in computer science education - ITiCSE ’11. ACM Press.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts with Scratch. Computer Science Education, 23(3), 239-264.

Papert, S. 1980. Mindstorms: children, computers and powerful ideas, Brighton, Harvester. (book)

Price, T. W., & Barnes, T. (2015, July). Comparing Textual and Block Interfaces in a Novice Programming Environment. In Proceedings of the eleventh annual International Conference on International Computing Education Research (pp. 91-99).

ACM.

Román-González, M., Pérez-González, J.-C., Moreno-León, J., Robles, G. Can computational talent be detected? Predictive validity of the Computational Thinking Test, International Journal of Child-Computer Interaction (2018),

https://doi.org/10.1016/j.ijcci.2018.06.004

Sentance, S. and Schwiderski-Grosche, S. 2012. Challenge and creativity: using .NET Gadgeteer in schools. In Proceedings of the 7th Workshop in Primary and Secondary Computing Education (Hamburg, Germany, November 08 - 09, 2012).

WiPSCE '12. ACM, New York

Sentance, S., & Waite, J. (2017). PRIMM: Exploring pedagogical approaches for teaching text-based programming in school. In Proceedings of the 12th Workshop in Primary and Secondary Computing Education: WIPSCE '17. Nijmegen.

Sentance, S., Barendsen, E. and Schulte, C. (Eds). Computer Science Education: Perspectives on teaching and learning in school. Bloomsbury Academic.

Sentance, S., Selby, C and Kallia, M. (2018). Assessment in the computing classroom. In Sentance, S., Barendsen, E. and Schulte, C. (Eds). Computer Science Education: Perspectives on teaching and learning in school. Bloomsbury Academic.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review.

Sirkiä, T., & Sorva, J. (2012, November). Exploring programming misconceptions: an analysis of student mistakes in visual program simulation exercises. In Proceedings of the 12th Koli Calling International Conference on Computing Education

Research (pp. 19-28). ACM.

Sorva, J. (2018). Misconceptions and the Beginner Programmer. In Sentance, S., Barendsen, E. and Schulte, C. (Eds). Computer Science Education: Perspectives on teaching and learning in school. Bloomsbury Academic.

Teague, D., & Lister, R. (2014, June). Blinded by their Plight: Tracing and the Preoperational Programmer. In Proceedings of the Psychology of Programming Interest Group Annual Conference 2014 (pp. 53-64).

Tedre, M. & Denning, P. J. (2016) The Long Quest for Computational Thinking. Proceedings of the 16th Koli Calling Conference on Computing Education Research , November 24-27, 2016, Koli, Finland: pp. 120-129.

The Royal Society, (2017). After the reboot: Computing Education in UK Schools. : https://royalsociety.org/topics-policy/projects/computing-education/

Waite, J. (2017). Pedagogy and computing: a literature review. Part of the Royal Society Computing Education project. Can be accessed at: https://royalsociety.org/topics-policy/projects/computing-education/

Webb, M., Bell, T., Davis, N., et al. (2018). Tensions in specifying computing curricula for K-12: Towards a principled approach for objectives. it - Information Technology, 60(2), pp. 59-68. Retrieved 22 Jul. 2018, from doi:10.1515/itit-2017-0017

Weintrop, D., & Wilensky, U. (2015, July). Using commutative assessments to compare conceptual understanding in blocks-based and text-based programs. In Proceedings of the Eleventh Annual International Conference on International

Computing Education

Wing, J. M. 2006. Computational Thinking. Communications of the ACM, 49, 33-35.

